Memorandum

Date: March 5, 2021

To: PFC 7 Documentation Set

From: David Potyondy

Re: Material-Modeling Support for PFC [fistPkg7.1] (Example Materials 2)

Ref: ICG7766-L

TABLE OF CONTENTS

1.0	EXAMPLE MATERIALS	3
1.	1 Parallel-Bonded Material Example	4
1.2	2 Parallel-Bonded Material Example (2D model)	6
1.3	3 Soft-Bonded Material Example	8
1.4	4 Soft-Bonded Material Example (2D model)	10
1.5	5 Flat-Jointed Material Example	12
1.0	6 Flat-Jointed Material Example (2D model)	14
1.	7 Smooth-Jointed Interface Example	16

1.0 EXAMPLE MATERIALS

The PFC 6.0 FISHTank produces linear, contact-bonded, parallel-bonded, soft-bonded, flat-jointed and user-defined materials. Examples for each material are provided in the Example Materials memos. Each example serves as a base case and provides a material at the lowest resolution sufficient to demonstrate system behavior. There is a material-genesis project for each material, and these projects are in the fistPkg7.N/ExampleProjects/MatGen-M directory, where N is the version number of the PFC FISHTank, and M is the material type. There are separate 2D and 3D projects for each material, and both projects are contained within the same example-project directory. Examples for the parallel-bonded and flat-jointed materials and the interface are provided in the following subsections. \(^1\)

¹ The microstructural arrangement and stress-strain curves obtained with the current FISHTank may vary slightly from those shown here, which may have been generated by an earlier version of the FISHTank.

1.1 Parallel-Bonded Material Example

The parallel-bonded material example is in the **MatGen-ParallelBonded** example-project directory. A parallel-bonded material is created to represent a typical sandstone, which we take to be Castlegate sandstone.² We denote our sandstone material as the SS_ParallelBonded material with microproperties listed in Table 1. The material is created in a cubic material vessel (of 50 mm side length, with a 3 GPa effective modulus).³ The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then parallel bonds are added between all grains that are in contact with one another (see Figure 1). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 1 Microproperties of SS ParallelBonded Material*

Property	Value		
Common group:			
$N_{\scriptscriptstyle m}$	SS_ParallelBonded		
T_m , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	2, 0.7, 1, 1960		
S_{g} , T_{SD} , $\left\{D_{\left\{l,u\right\}}\left[mm\right],\;\phi\right\}$, D_{mult}	0, 0, {4.0,6.0,1.0}, 1.0		
Packing group:			
$S_{_{\!R\!N}},\;P_{_{\!m}}$ [MPa], $arepsilon_{_{\!P}},\;arepsilon_{_{\! m lim}},\;n_{_{\! m lim}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}		
C_p, n_c	1, 0.30		
Parallel-bonded material group:			
Linear group:			
E^* [GPa], κ^* , μ	1.5, 1.5, 0.4		
Parallel-bond group:	Parallel-bond group:		
g_{i} [mm], $\bar{\lambda}$, \bar{E}^{*} [GPa], $\bar{\kappa}^{*}$, \bar{eta}	0, 1.0, 1.5, 1.5, 1.0		
$(\overline{\sigma}_c)_{\{m, sd\}}$ [MPa], $(\overline{c})_{\{m, sd\}}$ [MPa], $\overline{\phi}$ [degrees]	$\{1.0,0\},\ \{20.0,0\},\ 0$		
Linear material group:			
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4		

^{*} Parallel-bonded material parameters are defined in Table 4 of the base memo.

² Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

³ A parallel-bonded clumped material can be created in the same way as for the contact-bonded material example.

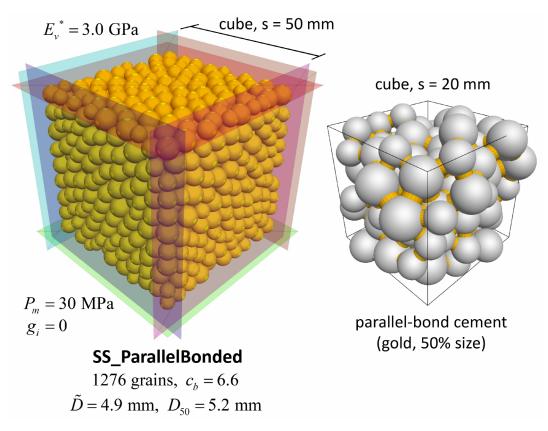


Figure 1 SS_ParallelBonded material at the end of material genesis with grains and intact parallel bonds in the microstructural box.

1.2 Parallel-Bonded Material Example (2D model)

The parallel-bonded material example for the 2D model is in the MatGen-ParallelBonded example-project directory. The files for the 2D model contain the p2* extension (e.g., MatGen.p2prj and mpParams.p2dat). A 2D parallel-bonded material (consisting of rigid unit-thickness disks) is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_ParallelBonded2D material with microproperties listed in Table 2. The material is created in a square-cuboid material vessel (of 50 mm side length and unit depth, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then parallel bonds are added between all grains that are in contact with one another (see Figure 2). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 2 Microproperties of SS ParallelBonded2D Material*

Property	Value		
Common group:			
N_m	SS_ParallelBonded2D		
T_m , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	2, 0.7, 1, 1960		
$S_g, T_{SD}, \left\{D_{\left\{l,u ight\}}\left[mm ight], \phi ight\}, D_{mult}$	0, 0, {4.0,6.0,1.0}, 1.0		
Packing group:			
$S_{_{RN}},\ P_{_{m}}$ [MPa], $arepsilon_{_{P}},\ arepsilon_{_{ m lim}},\ n_{_{ m lim}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}		
C_p, n_c	1, 0.08		
Parallel-bonded material group:	Parallel-bonded material group:		
Linear group:			
E^* [GPa], κ^* , μ	1.5, 1.5, 0.4		
Parallel-bond group:			
g_{i} [mm], $\bar{\lambda}$, \bar{E}^{*} [GPa], $\bar{\kappa}^{*}$, \bar{eta}	0, 1.0, 1.5, 1.5, 1.0		
$(\bar{\sigma}_c)_{\{m, sd\}}$ [MPa], $(\bar{c})_{\{m, sd\}}$ [MPa], $\bar{\phi}$ [degrees]	$\{1.0,0\},\ \{20.0,0\},\ 0$		
Linear material group:			
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4		

^{*} Parallel-bonded material parameters are defined in Table 4 of the base memo.

⁴ Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

⁵ A 2D parallel-bonded clumped material can be created in the same way as for the 2D contact-bonded material example.

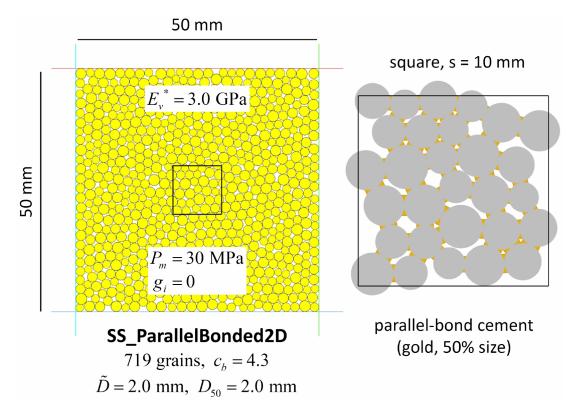


Figure 2 SS_ParallelBonded2D material at the end of material genesis with grains and intact parallel bonds in the microstructural box.

1.3 Soft-Bonded Material Example

The soft-bonded material example is in the **MatGen-SoftBonded** example-project directory. A soft-bonded material is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_SoftBonded material with microproperties listed in Figure 3. The material is created in a cubic material vessel (of 50 mm side length, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then soft bonds are added between all grains that are in contact with one another (see Figure 1). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 3 Microproperties of SS SoftBonded Material*

Property	Value		
Common group:			
N_m	SS_SoftBonded		
T_m , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	3, 0.7, 1, 1960		
S_g , T_{SD} , $\left\{D_{\left\{l,u\right\}}\left[\mathrm{mm}\right],\;\phi\right\}$, D_{mult}	0, 0, {4.0,6.0,1.0}, 1.0		
Packing group:			
$S_{_{RN}},\ P_{_{m}}$ [MPa], $arepsilon_{_{P}},\ arepsilon_{_{ m lim}},\ n_{_{ m lim}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}		
C_p, n_c	1, 0.30		
Soft-bonded material group:	Soft-bonded material group:		
g_i [mm], λ , E^* [GPa], κ^* , β	0, 1.0, 1.5, 1.5, 1.0		
$(\sigma_c)_{\text{m, sd}}$ [MPa], $(c)_{\text{m, sd}}$ [MPa], ϕ [degrees]	$\{1.0,0\},\ \{20.0,0\},\ 0.0$		
$\zeta, \gamma, \mu \lambda_b \lambda_i$	0.0, 0.0, 0.4, 0.0, 0.0		
Linear material group:			
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4		

^{*} Soft-bonded material parameters are defined in Table 5 of the base memo.

⁶ Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

⁷ A soft-bonded clumped material can be created in the same way as for the contact-bonded material example.

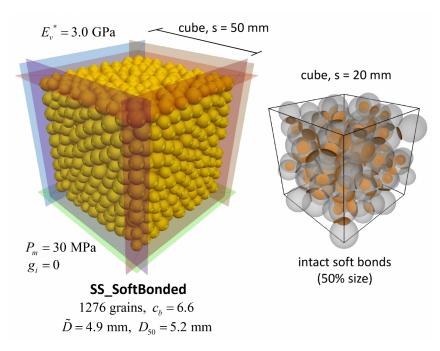


Figure 3 SS_SoftBonded material at the end of material genesis with grains and intact soft bonds in the microstructural box.

1.4 Soft-Bonded Material Example (2D model)

The soft-bonded material example for the 2D model is in the MatGen-SoftBonded example-project directory. The files for the 2D model contain the p2* extension (e.g., MatGen.p2prj and mpParams.p2dat). A 2D soft-bonded material (consisting of rigid unit-thickness disks) is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_SoftBonded2D material with microproperties listed in Table 4. The material is created in a square-cuboid material vessel (of 50 mm side length and unit depth, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then soft bonds are added between all grains that are in contact with one another (see Figure 2). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 4 Microproperties of SS SoftBonded2D Material*

Property	Value	
Common group:		
N_{m}	SS_SoftBonded2D	
T_m , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	3, 0.7, 1, 1960	
$S_{g}, T_{SD}, \left\{D_{\left\{l,u\right\}}\left[mm\right], \phi\right\}, D_{mult}$	0, 0, {4.0,6.0,1.0}, 1.0	
Packing group:		
$S_{_{R\!N}},\;P_{_{m}} ext{[MPa]},\;arepsilon_{_{\!P}},\;arepsilon_{_{\! ext{lim}}},\;n_{_{\! ext{lim}}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.08	
Soft-bonded material group:		
g_i [mm], λ , E^* [GPa], κ^* , β	0, 1.0, 1.5, 1.5, 1.0	
$(\sigma_c)_{\mathrm{\{m, sd\}}}$ [MPa], $(c)_{\mathrm{\{m, sd\}}}$ [MPa], ϕ [degrees]	$\{1.0,0\},\ \{20.0,0\},\ 0.0$	
$\zeta, \gamma, \mu \lambda_b \lambda_i$	0.0, 0.0, 0.4, 0.0, 0.0	
Linear material group:		
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4	

^{*} Soft-bonded material parameters are defined in Table 5 of the base memo.

⁸ Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

⁹ A 2D soft-bonded clumped material can be created in the same way as for the 2D contact-bonded material example.

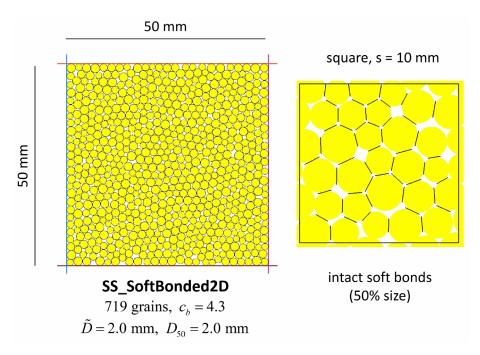


Figure 4 SS_SoftBonded2D material at the end of material genesis with grains and intact soft bonds in the microstructural box.

1.5 Flat-Jointed Material Example

The flat-jointed material example is in the **MatGen-FlatJointed** example-project directory. A flat-jointed material is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_FlatJointed material with microproperties listed in Table 5. The material is created in a cubic material vessel (of 50 mm side length, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then the flat-joint contact model is installed between all grains that are in contact with one another and the flat-jointed material properties are assigned to those flat-jointed contacts (see Figure 5). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 5 Microproperties of SS FlatJointed Material*

Property	Value	
Common group:		
$N_{\scriptscriptstyle m}$	SS_FlatJointed	
T_m , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	4, 0.7, 1, 1960	
$S_{g}, T_{SD}, \left\{D_{\left\{l,u\right\}}\left[\mathrm{mm}\right], \phi\right\}, D_{mult}$	0, 0, {4.0,6.0,1.0}, 1.0	
Packing group:		
$S_{RN},\;P_{m}$ [MPa], $\;arepsilon_{P},\;arepsilon_{ ext{lim}},\;n_{ ext{lim}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.30	
Flat-jointed material group:		
C_{MS} , g_i [mm], ϕ_B , ϕ_G , $(g_o)_{\text{[m,sd]}}$ [mm], $\{N_r, N_{\alpha}\}$	false, 0, 1, 0, $\{0,0\}$, $\{1,3\}$	
$\{C_{\lambda}, \ \lambda_{\nu}\}, \ E^{*}[GPa], \ \kappa^{*}, \ \mu$	$\{0, 1.0\}, 3.0, 1.5, 0.4$	
$(\sigma_c)_{\text{\{m, sd\}}}$ [MPa], $(c)_{\text{\{m, sd\}}}$ [MPa], ϕ [degrees]	$\{1.0,0\},\ \{20.0,0\},\ 0$	
Linear material group:		
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4	

^{*} Flat-jointed material parameters are defined in Table 5 of the base memo.

¹⁰ Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

¹¹ A flat-jointed clumped material can be created in the same way as for the contact-bonded material example.

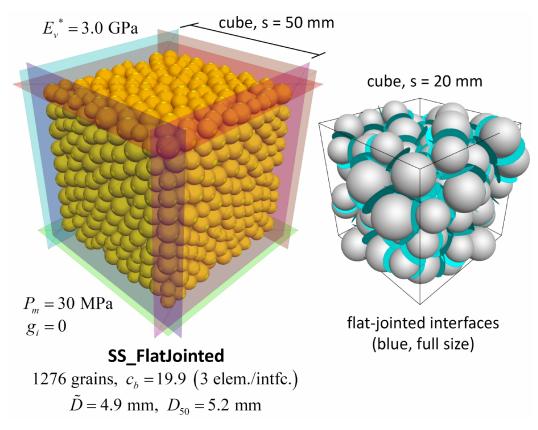


Figure 5 SS_FlatJointed material at the end of material genesis with grains and flat-jointed interfaces in the microstructural box.

1.6 Flat-Jointed Material Example (2D model)

The flat-jointed material example for the 2D model is in the MatGen-FlatJointed example-project directory. The files for the 2D model contain the p2* extension (e.g., MatGen.p2prj and mpParams.p2dat). A 2D flat-jointed material (consisting of rigid unit-thickness disks) is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_FlatJointed2D material with microproperties listed in Table 6. The material is created in a square-cuboid material vessel (of 50 mm side length and unit depth, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then the flat-joint contact model is installed between all grains that are in contact with one another and the flat-jointed material properties are assigned to those flat-jointed contacts (see Figure 6). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 6 Microproperties of SS FlatJointed2D Material*

Property	Value	
Common group:		
N_m	SS_FlatJointed2D	
T_m , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	4, 0.7, 1, 1960	
S_g , T_{SD} , $\left\{D_{\left\{l,u\right\}}\left[\mathrm{mm}\right],\;\phi\right\}$, D_{mult}	0, 0, {1.6,2.4,1.0}, 1.0	
Packing group:		
$S_{\scriptscriptstyle RN},\; P_{\scriptscriptstyle m}$ [MPa], $arepsilon_{\scriptscriptstyle m P},\; arepsilon_{\scriptscriptstyle m lim},\; n_{\scriptscriptstyle m lim}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.08	
Flat-jointed material group:		
C_{MS} , g_i [mm], ϕ_B , ϕ_G , $(g_o)_{\{m,sd\}}$ [mm], N_r	false, 0, 1, 0, $\{0,0\}$, 2	
$\{C_{\lambda}, \lambda_{\nu}\}, E^{*}[GPa], \kappa^{*}, \mu$	$\{0, 1.0\}, 3.0, 1.5, 0.4$	
$(\sigma_c)_{\{m, sd\}}$ [MPa], $(c)_{\{m, sd\}}$ [MPa], ϕ [degrees]	$\{1.0,0\},\ \{20.0,0\},\ 0$	
Linear material group:		
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4	

^{*} Flat-jointed material parameters are defined in Table 5 of the base memo.

¹² Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

¹³ A 2D flat-jointed clumped material can be created in the same way as for the 2D contact-bonded material example.

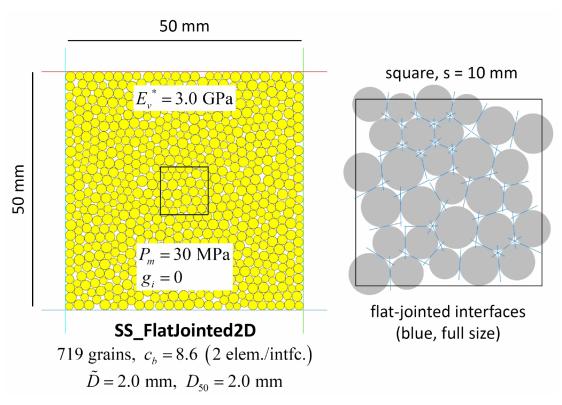


Figure 6 SS_FlatJointed2D material at the end of material genesis with grains and flat-jointed interfaces in the microstructural box.

1.7 Smooth-Jointed Interface Example

The smooth-jointed interface example is in the **MatGen-Interface** example-project directory... {DP: To be developed and described here...}