
 
1 INTRODUCTION 
 
The McCoy-Cove mine is a non-operational gold mining complex located along the Battle 
Mountain-Eureka Trend in central Nevada. The mine is composed of the McCoy and Cove open 
pits and associated underground workings. The Cove pit has partially filled to form the Cove pit 
lake following the cessation of mining and dewatering operations at the site. Regulatory re-
quirements stipulated predictive geochemical modeling of the pit lake to evaluate the potential 
for water-quality degradation and for use in ongoing permitting and closure activities. 

In compliance with regulatory guidance, water-quality monitoring has been conducted at the 
Cove pit lake during the 15-year filling period. These water-quality data provide a benchmark 
for the calibration of a pit-lake geochemical model. In addition to water-quality observations, a 
number of geochemical testing procedures were previously utilized to characterize Cove pit wall 
rocks. These include solid-phase rock chemistry tests, Meteoric Water Mobility Procedure 
(MWMP) tests, acid-base accounting (ABA) tests, and humidity-cell tests. Using the geochemi-
cal code PHREEQC, the geochemical model incorporated the water balance from a calibrated 
groundwater flow model, empirical solute-loading derived from the geochemical characteriza-
tion testing, and the chemogenetic processes of mineral dissolution and precipitation, adsorp-
tion, and gas exchange. The geochemical model was then calibrated to the observed chemistry 
from water-quality monitoring reports. 
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ABSTRACT: A geochemical model was developed to predict future water quality of the Cove 
pit lake in support of site closure and regulatory permitting. The terminal, groundwater-fed 
Cove pit lake began filling in 2001, and water-quality samples from the 15-year filling period 
were used to calibrate the pit-lake model and evaluate accuracy of the predictions. 

Inputs to the pit-lake model included geochemical characterization results and a calibrated 
groundwater flow model. Modeling included the processes of mineral dissolution and precipita-
tion, gas exchange, and adsorption. 

The results of the geochemical model assess long-term chemogenetic effects on water quality 
and, overall, closely match observed chemistry for a variety of constituents. This work high-
lights the applicability of various geochemical datasets to predictive modeling, evaluates dis-
crepancies between observed and predicted water quality, and presents geochemical modeling 
techniques used to achieve predictions that are both representative of observed water quality and 
useful for evaluating future pit-lake chemistry. 



 
 

2 BACKGROUND 
 

The Cove pit has been the subject of multiple previous studies that included hydrological (Han-
na & Streiff 1994; Itasca 2016), geological/mineralogical (Johnston 2003; Johnston et al. 2008), 
and geochemical (HCI 2002) publications and reports. These studies were used to provide back-
ground information on the Cove pit. 

2.1 Mining Operations 
Mining operations in the Cove pit began in 1988 using a combination of underground and open-
pit methods. Dewatering began in 1989 using a combination of dewatering wells and sumps 
(Hanna & Streiff 1994). Operations continued through 2001 when the Cove mine was put into 
care-and-maintenance status, which continues to the present.  

2.2 Geology of the Cove Pit 
The ultimate pit surface (UPS) of the Cove pit is composed of the Triassic Augusta Mountain 
Formation, an intermixed sequence of limestone, dolostone, conglomerate, and sandstone. The 
Augusta Mountain Formation is further subdivided into the Home Station, Panther Canyon, and 
Smelser Pass Members. The Home Station Member is a massively bedded limestone with minor 
lenses of sandstone and conglomerate. The Panther Canyon Member, which was the major ore 
host in the Cove deposit, has been further subdivided into the lower dolostone submember and 
the upper transitional submember. The lower dolostone submember is a uniformly bedded dolo-
stone, and the upper transitional submember coarsens upward from a dolostone, through silty 
and sandy dolostone and sandstone, to an upper conglomerate. The uppermost member of the 
Augusta Mountain Formation, the Smelser Pass Member, is a microcrystalline limestone. Sub-
sequent to deposition of sedimentary rocks, the area was subjected to Tertiary volcanism, which 
included emplacement of Eocene dikes and sills followed by deposition of the Tuff of Cove 
Mine (Johnston 2003; Johnston et al. 2008). 

2.3 Regional Hydrogeology and Water Quality 
Two distinct aquifers transmit groundwater flow within the area immediately surrounding the 
Cove pit, an alluvial aquifer and a regional carbonate bedrock aquifer. In general, the geochemi-
cal characteristics of both aquifers are similar, although the regional carbonate bedrock aquifer 
displays greater average concentrations of total dissolved solids (TDS), alkalinity, sulfate, and a 
number of major (e.g. Ca, Mg, Mn, and Na) and trace (e.g. As, Sb, B, Cd, Tl, and Zn) dissolved 
constituents.  

Observed water quality in the Cove pit lake is generally acceptable, with an average pH value 
of 7.9 standard units (s.u.) and an average TDS of 1,540 mg/L in 2015. The dominant solutes in 
pit-lake waters, in order of decreasing concentrations, are SO4, alkalinity, Ca, Na, Cl, Mg, and 
K. The majority of constituents have shown a decreasing trend over the 15-year infilling period 
of the pit lake (to date). Constituents that have shown an increase in average concentration in-
clude alkalinity, Al, As, B, Cr, F, pH, K, Na, and Tl. Fluoride is the only one of these constitu-
ents that currently exceeds the associated NDEP Profile III reference value; although, a screen-
ing-level ecological risk assessment (ERM 2016) indicates that current and predicted F 
concentrations do not pose a risk to wildlife or livestock. 

3 GEOCHEMICAL CHARACTERIZATION 

The Cove pit UPS was characterized to satisfy initial permitting requirements, and in association 
with previous water-quality studies (e.g. HCI 2002). Characterization methods included both 
static and kinetic geochemical tests. 



3.1 Static Geochemical Testing Procedures 
Geochemical characterization of the Cove UPS has included MWMP tests, ABA procedures, 
and solid-phase rock chemistry tests. Meteoric Water Mobility Procedure tests are intended to 
quantify the release of solutes stored in a rock sample following interaction with meteoric water. 
The results of MWMP tests for the Cove pit were used to supplement the kinetic testing results 
by providing information on the release of Cl, F, and NO3, as these parameters were not includ-
ed in humidity-cell tests (see below). 

Acid-base accounting (ABA) procedures are used to evaluate the balance between acid-
generation potential (AGP) and acid-neutralization potential (ANP) within the UPS and are in-
dicative of the potential net production of acid by the weathering of wallrock material. The re-
sults of ABA procedures for Cove pit wallrock indicate that the UPS is overall net acid-
neutralizing but that some UPS materials (e.g. portions of the Panther Canyon Member) can be 
acid generating. The specific results of ABA tests (together with the kinetic testing results dis-
cussed below) were used to calibrate a site-specific pyrite-oxidation model that was subsequent-
ly used to predict the mass of oxidized rock inundated by the pit lake at different times. 

Solid-phase rock analyses that employed acid-digestion and inductively coupled plasma 
spectroscopy were used to define the total amount of each chemical constituent available within 
the Cove UPS. These results were used to set an upper limit on the total amount of each constit-
uent that could be released from the UPS through leaching reactions.  

3.2 Kinetic Geochemical Testing Procedures 
In addition to static geochemical testing procedures, the temporal variation in leachate chemistry 
was examined using humidity-cell tests. Humidity-cell tests consist of sequential flushing of a 
reaction vessel set up to promote continuous oxidation of rock materials, thereby evaluating the 
variance in leachate chemistry over prolonged periods of time. The results of humidity-cell tests 
were used to calculate an empirical solute-loading rate for each parameter included in the pre-
dictive geochemical model. These solute-loading rates represent the pseudo-steady state, long-
term loading of constituents due to ongoing sulfide-oxidation and other mineral dissolution reac-
tions in the UPS. A total of 32 humidity-cell tests were conducted for the Cove pit.  

3.3 Lithochemical Model 
A previous study of the Cove pit indicated that the lithologies exposed in the UPS are variably 
altered (Johnston et al. 2008), which has affected the geochemical characteristics of the various 
geologic units exposed in the UPS. The influence of alteration on acid-generation and leaching 
characteristics was apparent from the characterization testing; therefore, the geologic map of the 
Cove pit was used in conjunction with previous studies and geochemical characterization results 
to create a lithochemical model of the Cove UPS. This lithochemical model identified and 
mapped the distribution within the UPS of six distinct lithochemical rock types for utilization in 
the predictive geochemical model: 1) Intrusive-Unaltered, 2) Limestone-Clay, 3) Limestone-
Carbonaceous, 4) Limestone-Unaltered, 5) Panther Canyon-Sulfide, and 6) Panther Canyon-
Oxide. Each of these lithochemical rock types will be at least partially inundated by the pit lake 
during filling. 

4 PREDICTIVE MODELING METHODS 

The chemical composition of the Cove pit lake will be controlled by a variety of factors over the 
time period that the lake is approaching geochemical and hydrogeologic equilibrium. These fac-
tors include groundwater seepage into the lake, evapoconcentration, solute-loading from the 
UPS, gas exchange with the atmosphere, mineral dissolution and precipitation, and adsorption. 
Each of these processes was incorporated into the predictive geochemical model. 

 



 
 

4.1 Water Sources 
The balance between meteoric precipitation and evaporation at the Cove pit is typical of the arid 
conditions that are found throughout much of Nevada, with evaporation rates that are greater 
than meteoric precipitation rates. The Cove pit hydrogeologic groundwater flow model (HCI 
2002, Itasca 2016a) indicated a net evaporation rate of 1.02 m/yr. The volume of water evapo-
rated from the pit lake in each annual model time step was calculated as the product of this 
evaporation rate and the surface area of the pit lake. Evapoconcentration was applied in the 
PHREEQC model by removing the corresponding fraction of pure deionized water (pH=7, 
TDS=0).  

The quantity of water in the pit lake, as well as groundwater inflow into the pit lake, was tak-
en from the calibrated hydrogeologic groundwater flow model. This groundwater flow model 
was calibrated to the observed pit-lake stage elevation as well as water levels measured in 
groundwater wells in the area (Itasca 2016b). In order to obtain an estimate of the range of po-
tential groundwater inflow compositions, regional groundwater chemistry was statistically ana-
lyzed to obtain three representative compositions for each aquifer. These three compositions 
were the average composition (mean concentration for each parameter), and the 10th and 90th 
percentiles (of the concentrations for each parameter) for groundwater compositions in both the 
alluvial and carbonate bedrock aquifers. The average groundwater composition was used as the 
input for the base-case prediction, whereas the 10th and 90th percentiles, respectively, represent 
lower and upper bounds for predicted values. These three compositions were paired with the wa-
ter quantity from the flow model to define the overall solute loading from influent bedrock and 
alluvial groundwater in each time step in the model. 

4.2 Solute Loading 
The release of solutes stored in the weathered UPS has the potential to impact the water quality 
of the Cove pit lake. For example, stored solutes can accumulate as a result of sulfide-oxidation 
reactions during mining when the water table was depressed due to dewatering operations and 
possibly prior to mining in the zone above the pre-mining water table.  

To simulate solute release in the predictive water-quality model, empirical solute-loading 
rates were calculated using the results of humidity-cell tests. The release of solutes from the 
humidity-cell tests varied through time. Release rates at the onset of testing were typically ele-
vated, while additional reaction products (solutes) that had accumulated in the sample prior to 
testing were being flushed from the sample. This process was simulated in the pit-lake water-
quality model by calculating long-term, pseudo-steady-state solute-release rates from the humid-
ity-cell tests (mass of solute per kg of oxidized rock per unit time) for each rock type and then 
applying those rates to the predicted oxidized mass for the respective rock type at the time it is 
inundated by the pit lake.  

The predicted oxidized mass of each rock type through time was estimated using a modified 
approach to the Davis-Ritchie model of pyrite oxidation (Davis & Ritchie 1986, 1987, Davis et 
al. 1986). This model of pyrite oxidation is based on the diffusion of oxygen gas (O2) through 
wall rock. The Cove pit-lake study utilized a propriety modified version of the original Davis-
Ritchie model, developed by Liu et al. (2002). Additional research on pyrite oxidation has for-
mulated rate laws governing the oxidation reaction (Jerz & Rimstidt 2004). Calculations using 
the method of Jerz & Rimstidt (2004) indicated that pyrite-oxidation rates may be appreciable at 
an O2 concentration of approximately 0.01% of the mean atmospheric value. 

The Cove pit pyrite-oxidation model was used to estimate the O2 concentration profile 
through the wall rock throughout time. The predicted O2 concentration profile was used to pre-
dict the thickness of the zone of active oxidation (i.e. greater than 0.01% of atmospheric oxy-
gen). This thickness of the zone of oxidation was paired with the density of the UPS to derive an 
estimate of the rock mass actively undergoing oxidation for each lithochemical rock type of the 
Cove UPS throughout the modeling period.   

The mass of each constituent released in each time step was then calculated according to 
Equation 1. The mass of solute released in each time step (St) from rock type n is calculated as 
the product of the rock mass in the oxidizing zone (M), the calculated solute-release rate (Sr), 
the amount of time over which the solutes had been accumulating (t, 1-year time-step duration), 



and a surface area proportionality constant (CSA, a scalar that relates the reactive surface area of 
rock in humidity-cell tests to the reactive surface area of rock in the UPS; a value of 0.25 was 
used in the predictive water-quality model and is discussed in more detail in Itasca 2016b). The 
total solute release was then summed for each of the n rock types present in the UPS. 

 
 𝑆𝑆𝑡𝑡  = ∑ 𝑆𝑆𝑟𝑟 ∗ 𝑀𝑀 ∗ 𝑡𝑡 ∗ 𝐶𝐶𝑆𝑆𝑆𝑆𝑛𝑛

1                                                   (1) 

4.3 Gas and Solid-Mineral Equilibrium Phases 
The exchange of gases (carbon dioxide [CO2] and O2) between the atmosphere and water is a 
process known to affect pit-lake water quality. Pit lakes that exhibit (or are anticipated to exhib-
it) seasonal mixing will have enhanced gas exchange relative to stratified pit lakes or pits that 
are backfilled with tailings or waste rock. Pit lakes that have enhanced gas exchange with the 
atmosphere tend to have greater O2 concentrations and oxidation-reduction (redox) potential, 
and as a result display decreased solubility for metals commonly bound in oxyhydroxides, such 
as Mn and Fe (Eary 1999). Enhanced CO2 exchange with the atmosphere tends to increase pH, 
due to CO2 degassing. Degassing occurs as pit-lake waters move closer to equilibrium with CO2 
concentrations in the atmosphere (values of approximately 10-3.5 atm), and farther from equilib-
rium with groundwater CO2 (values of approximately 10-1.5 to 10-3 atm).  

Although limnological modeling of the Cove pit-lake has not been performed, observations 
from the surface, middle, and bottom of the lake for constituents known to be dependent on the 
redox potential of pit-lake waters (i.e. Fe, Mn, and As) indicate that the pit lake experiences 
turnover at least once per year.  

The PHREEQC geochemical model simulates equilibrium reactions between the bulk pit-
lake solution and the specific set of equilibrium phases defined in the model inputs. The inclu-
sion of these phases in the model was based on observations from analogous pit lakes, experi-
mental results, literature review, and theoretical considerations. Equilibrium phases were desig-
nated for a number of constituents in the pit lake, including Al (gibbsite), Ba (barite), Ca 
(calcite, dolomite, and gypsum), Cd (otavite), Cu (malachite), F (fluorite), Fe (ferrihydrite), Mn 
(rhodochrosite), Pb (cerrusite), Sr (strontianite), and Zn (smithsonite). All of these mineral equi-
librium phases, with the exception of dolomite, have been noted as a likely equilibrium control 
in pit lakes (Eary 1999) and were allowed to precipitate in the model. Dolomite was allowed on-
ly to dissolve in the predictive model to simulate the reaction of acid-neutralizing rock types 
(primarily Limestone-Unaltered) with leachate derived from acid-producing rock types (Intru-
sive-Unaltered, Panther Canyon-Sulfide). The presence of dolomite available for reaction with 
acidic leachate is supported by Johnston et al. (2008), who noted the dolomite component of the 
Cove UPS. 

4.4 Adsorption 
Adsorption of species onto precipitated Fe and Mn oxyhydroxides is a process hypothesized to 
control the concentrations of metals (e.g. Cd, Cr, Pb, and Zn) and metalloids (e.g. As, Se, and 
Tl) in pit-lake environments (Davison 1993, Eary 1999, López et al. 2010), and that has been 
indicated by previous pit-lake modeling studies (Tempel et al. 2000, Castendyk & Webster-
Brown 2007, Newman 2014). Adsorption of species to precipitated ferrihydrite in the predictive 
geochemical model was simulated using the diffuse double layer model (DLM) provided by 
Dzombak & Morel (1990). Due to incomplete thermodynamic data, adsorption to Mn oxyhy-
droxide phases (e.g. manganite and birnessite) was not included in the predictive model, alt-
hough adsorption is known to occur on these solid species (Tonkin et al. 2004).  

In order to evaluate the sensitivity of predicted water quality to adsorption, a predictive simu-
lation was also completed using the base-case water chemistry (mean concentration for each 
constituent) and assuming no precipitation of (or subsequent adsorption to) ferrihydrite. 



 
 

5 PREDICTIVE MODELING RESULTS 

The water quality of the Cove pit was simulated for 100 years beyond the present, for a total of 
approximately 115 years of pit-lake infilling. In general, the predicted water quality of the Cove 
pit lake is similar to that of influent groundwater, with additional controls imparted from solute 
loading, mineral precipitation, evapoconcentration, and adsorption. 

5.1 Pit-Lake Chemogenesis 
Pit-lake water-quality predictions indicate an initial influx of chemical constituents to the juve-
nile pit lake as the UPS is flushed of accumulated solutes. Figures 1-4, respectively, display the 
predicted concentrations of Ca, SO4, Na, and As throughout the simulation period. Figures 1-2 
illustrate the flushing of solutes accumulated by sulfide-oxidation and mineral dissolution reac-
tions in the UPS. Calcium concentrations in the simulated pit lake are initially high, followed by 
a decreasing trend as the initial pit lake is diluted by influent groundwater. These trends are re-
flected in the pit-lake monitoring data and are similar for SO4 (Fig. 2). Calcium continues to fol-
low a decreasing trend throughout the simulation period due to precipitation of calcite, whereas 
SO4

 shows a slight increasing trend as a result of evapoconcentration. Constituents with similar 
trends that were also predicted to be involved in mineral precipitation reactions include Al 
(gibbsite), Ba (barite), Cu (malachite), F (fluorite), and Fe (ferrihydrite). 

Figure 1. Calcium predictive water-quality model results (lines) and observations (points). 
 
The long-term evapoconcentration trend in the pit lake is exemplified by Na in Figure 3. This 

constituent is originally derived from leaching of the UPS and influent groundwater and is not 
predicted to participate in subsequent chemical reactions, such as mineral precipitation or ad-
sorption (although some ion exchange in clay minerals may occur). The increasing trend in pre-
dicted Na concentrations primarily reflects evapoconcentration of the pit lake and is similar to 
the trend observed in the pit-lake monitoring data. Other constituents displaying only long-term 
evapoconcentration trends (and not being affected by mineral equilibria) include Ag, B, Cl, Hg, 
K, Li, Mg, Mn, Mo, N, P, and U.  

 
 



 

 Figure 2. Sulfate predictive water-quality model results (lines) and observations (points). 
 
 

Figure 3. Sodium predictive water-quality model results (lines) and observations (points). 
 



 
 

The effect of adsorption in the simulated pit lake is illustrated by the predicted As concentra-
tions in Figure 4. Predicted As concentrations are temporally stable throughout the simulation 
period (with the exception of the simulation with ferrihydrite suppressed) and are generally less 
than the observed concentrations. Predictions indicated that approximately 90% of the As pre-
sent in the pit lake would be adsorbed. Significantly greater concentrations of As in the simula-
tion with ferrihydrite suppressed indicate the sensitivity of the model results to adsorption reac-
tions. Other constituents markedly affected by adsorption include Be, Cd, Cr, Cu, Pb, Ni, V, and 
Zn. 

 

Figure 4. Arsenic predictive water-quality model results (lines) and observations (points). 

5.2 Comparison of Predicted and Observed Pit-Lake Chemistry 
In general, the geochemical model reasonably represents the observed concentrations of parame-
ters monitored throughout the initial approximately 15-year period of infilling from 2001 
through 2015. Figure 5 provides a comparison of the predicted concentrations of parameters in-
cluded in the pit-lake water-quality model for the base-case scenario with the average observed 
concentrations from 2015. 

Figure 5 illustrates that a number of major and minor constituents were predicted relatively 
accurately by the geochemical model; these constituents lie near the 1:1 line on Figure 5, which 
represents predicted concentrations that are equal to the average pit-lake concentrations from 
2015. These constituents include alkalinity, B, Ca, Cr, Cl, K, Mg, Mo, Na, pH, Sr, SO4, and Zn. 
Constituents that were moderately overpredicted by the model (plotted close to but above the 
1:1 line) include Cd and Mn. Constituents that were moderately underpredicted by the model 
(plotted close to but below the 1:1 line) include Ag, Ba, Li, Ni, Se, and U.  

Many of the apparent discrepancies between the predicted and observed concentrations illus-
trated in Figure 5 are attributable to the use of detection limits to represent concentrations for 
non-detects in the observed pit-lake water quality (Al, Be, Cu, Fe, P, Pb, Sn, and V); however, 
there were several notable discrepancies between predicted and observed water quality. Concen-
trations of NO2-NO3, Sb, and Tl were overpredicted by the model and As concentrations were 
underpredicted. 



Figure 5. Comparison of predicted and observed (average from 2015) pit-lake chemistry. 

5.3 Discrepancies Between Predicted and Observed Concentrations 
Possible causative factors for the discrepancies between the observed and predicted concentra-
tions include propagation of detection limit errors, thermodynamic database considerations, and 
inadequate geochemical characterization data. 

5.3.1 Detection Limits 
As described above, most of the apparent discrepancies occur for solutes that are below detec-
tion limits in the pit lake. Solutes that were not detected during the humidity-cell tests were as-
signed concentrations of zero for use in calculating the solute-loading rate. However, influent 
groundwater chemistry was calculated using one-half the detection limit for non-detect samples; 
therefore, the addition of constituents from influent groundwater may overrepresent loading of 
these constituents to the pit lake. 

5.3.2 Thermodynamic Considerations 
Several of the parameters noted to be underpredicted were also noted to display similar differ-
ences between predicted and observed concentrations in predictive modeling performed by Eary 
& Schafer (2009) of a Post-Betze proto-pit-lake test. Specifically, Eary & Schafer (2009) noted 
significant underprediction of As, Cu, Fe, and Pb. These researchers hypothesized 
that detection- limit errors and a lack of appropriate thermodynamic data for the incorporation of 
trace elements into solid minerals were likely causes of noted discrepancies (Eary & Schafer 
2009). A lack of, or incomplete, thermodynamic data is the most likely cause for the discrepan-
cy between predictions and observations of Sb and Tl in the Cove pit lake. The thermodynamic 
database used in the predictive geochemical model (minteq.V4) does not contain appropriate 
thermodynamic data for adsorption of Tl. Addition of these thermodynamic data to the database 
may have reduced the predicted Tl concentrations; however, the default database was used. 
Tempel et al. (2000) cited a similar cause for the overprediction of As in a modeling study of the 
Getchell pit lake (the thermodynamic data in that study did not include arsenic sorption data). 
Although the thermodynamic database used in the Cove model does contain data for the adsorp-
tion of Sb, there are a limited number of surface species compared to those for constituents such 
as As. An expanded thermodynamic database including data from the literature (e.g. Xi et al. 
2011) may have resulted in additional Sb adsorption and an improved representation of the 
measured pit-lake concentrations. 

Discrepancies between As predictions and observations in the Cove model may also be 
linked to adsorption behavior. The simulation that suppressed ferrihydrite precipitation (and as-



 
 

sociated As sorption) resulted in predicted arsenic concentrations that were 0.392 mg/L greater 
than those observed in the pit lake, whereas the predictions that included ferrihydrite precipita-
tion (and sorption) underpredicted arsenic concentrations by 0.024 mg/L. This indicates that, 
although As sorption to ferrihydrite is probably occurring in the Cove pit lake, the extent of this 
reaction may be overrepresented by the PHREEQC model when ferrihydrite precipitation and 
sorption is included. Nonetheless, the most representative prediction of the measured As con-
centrations was achieved by including the processes of ferrihydrite precipitation and sorption. 

One study quantitatively addressed arsenic adsorption in pit-lake predictions in the Dexter pit 
lake (northeastern Nevada). That study modeled ferrihydrite precipitation and adsorption over 
several seasonal mixing events (Newman 2014) and indicated that the precipitation of ferrihy-
drite, and subsequent adsorption of As, tended to underestimate Fe and As concentrations in the 
bulk pit lake. Calibration of these processes, based on the observed hydrodynamic structure and 
observed Fe and As concentrations, was required to more accurately simulate the Fe and As 
concentrations in the Dexter pit lake; however, the details necessary for that type of calibration 
are not currently available for the Cove pit lake. 

Additional research on the speciation of aqueous As indicates that a number of species have 
poorly constrained thermodynamic data (Nordstrom & Archer 2003; Helz & Tossell 2008). 
Nordstrom & Archer (2003) provided a comprehensive review and update to thermodynamic 
data for a variety of As species. Helz & Tossell (2008), however, indicated that these updated 
thermodynamic data may be applicable only under redox conditions containing small amounts 
of dissolved sulfide. Stratified pit lakes are known to display elevated dissolved sulfide in hypo-
limnion waters (Martin & Pedersen 2002); therefore, the thermodynamic database used for the 
predictive geochemical model may not accurately describe the speciation of aqueous As (Helz & 
Tossell 2008), which in turn affects adsorption behavior (Plant et al. 2003). 

In addition to sorption, the mechanism of coprecipitation can remove metals and metalloids 
from solution. The thermodynamic database used did not include data that would enable simula-
tion of coprecipitation of constituents like Sb and Tl with equilibrium precipitates such as ferri-
hydrite.  

5.3.3 Geochemical Characterization Data 
Geochemical characterization data quality may be an additional source of error in the predictive 
geochemical model. Humidity-cell testing was conducted on all of the parameters included in 
the model, with the exceptions of Cl, F, and NO2-NO3. For these parameters, the solute-loading 
rates were approximated from the results of the MWMP tests. Comparison of SO4 release from 
both humidity-cell tests and MWMP tests indicated that MWMP releases were approximately 
30 times greater. The MWMP releases for Cl, F, and NO2-NO3 were therefore adjusted by this 
empirical factor to approximate the humidity-cell release rates. Close agreement between pre-
dicted and observed concentrations for Cl and F (Fig. 5) indicate that this approach resulted in a 
close match for these constituents, but not for NO2-NO3, which was overpredicted by the geo-
chemical model. This approach highlights a useful way to circumvent gaps in geochemical char-
acterization data, although empirical adjustments may not always be practical or justified. 

In addition to the lack of data for several parameters, the original ABA characterization un-
derrepresented the sulfur content and associated acid-generating behavior of several Cove pit 
samples. A variety of ABA methods have been used to characterize waste rock for mining oper-
ations (e.g. Sobek et al. 1978). The method used in the original Cove pit UPS characterization 
(total sulfur by peroxide oxidation) did not account for the entire AGP of six of the 32 Cove 
humidity-cell samples. These six samples were observed to produce more sulfur than was indi-
cated by the method to be originally present in the sample. To account for this experimental er-
ror, the total original sulfur present in each sample, which was an input to the pyrite-oxidation 
model, was adjusted to be 1.5 times the amount that was released over the entire testing period. 
The scalar of 1.5 was chosen to be environmentally conservative (i.e. tend towards overestima-
tion of AGP), based on the SO4 production rate trends during the testing period. Without the ap-
plied adjustments, the net effect of these errors would likely cause underprediction of total sulfur 
available for release and overprediction of  the mass of oxidized rock available for leaching, 
which in turn would underpredict leaching of sulfur (as SO4) from the UPS relative to the other 
constituents.  



6 CONCLUSIONS 

The Cove pit lake represents a novel opportunity to compare the results of a predictive geo-
chemical model to a pit-lake water-quality dataset of relatively long duration. Additionally, geo-
chemical characterization data for the Cove UPS allow an empirical model for solute loading to 
the pit lake to be constructed. The combination of solute loading, groundwater inflow, and 
aqueous geochemical processes were used in a predictive model to assess long-term water quali-
ty and to guide regulatory decisions.  

The predicted concentrations of most of the major and minor constituents are similar to the 
measured concentrations after approximately 15 years of infilling. Predicted concentrations of 
trace constituents (i.e. less than approximately 0.1 mg/L) were generally representative of the 
measured concentrations, but were not as similar as for the major and minor constituents. Many 
of the apparent discrepancies between predicted and measured concentrations were attributable 
to the use of detection limits to represent concentrations that were below detection limits in 
some or all of the pit-lake samples. Some of the discrepancies between predicted and measured 
concentrations were more noteworthy; concentrations of NO2-NO3, Sb, and Tl were overpre-
dicted by the model and As concentrations were underpredicted, primarily as a result of limits 
associated with the thermodynamic database used in the model.  

Sensitivity evaluations generally represented the ranges of concentrations measured in the pit 
lake, and the model predictions were useful from a regulatory standpoint to assess the need (or, 
in this case, the lack thereof) for preventative actions in the pit lake. It is important to note that 
long-term predictions of water quality inherently contain uncertainty related to ranges in  
groundwater chemistry, geochemical characteristics of host rock, and climate.  

Although data deficiencies and non-ideal historical methodologies likely hindered the predic-
tive performance of the predictive geochemical model, this work highlights several approaches 
for addressing these hurdles. Specifically empirical corrections, while simple, may be appropri-
ate where data are inadequate. Finally, this work highlights the inherent uncertainties in geo-
chemical modeling that arise from incomplete or inaccurate thermodynamic datasets. 
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