
1 INTRODUCTION 

High-quality meshes are essential for accuracy in a numerical model. With the help of partial 
differential equations (PDEs), Knupp (2007) showed how the quality of the mesh can affect the 
accuracy and efficiency of numerical simulations. There are many studies on the subject of 
determining good mesh quality metrics (Stimpson 2007, Pebay 2004, Knupp 2003, 2007, Kwok 
& Chen 2000 and Robinson 1987). They all agree that element shape is an important parameter 
in final result accuracy. Even a few poorly-shaped elements can cause significant error.  It is 
therefore important to be able to identify and correct these problems at the start of model 
creation. 

Aspect ratio, orthogonality (interior angle), face planarity, skew and taper are the most 
common measures of the quality of structured elements. Over the past decade, aspect ratio and 
orthogonality have become more important and are widely used quality measures for 2-
dimensional and 3-dimensional elements.  

There are three main types of mesh quality improvement techniques: adaptivity (Chalasani et 
al. 2002, Klein 1999), smoothing (Freitag & Plassmann 2000, Amenta & Eppstein 1997), and 
edge or face swapping (Freitag & Ollivier 1997, Joe 1995). In mesh smoothing techniques the 
coordinates of nodes (grid point) are altered without changing the connectivity of the vertices. 
Because of this advantage the mesh smoothing technique was employed in this paper, 
specifically by generating a mesh with a given topology and then moving the grid-points to 
match the desired level of deformation. 

FLAC
3D

 can measure three functions (orthogonally, aspect ratio and face planarity) which 
allow the users to view mesh metric information and thereby evaluate the mesh quality. In the 
presented paper orthogonally and aspect ratio were tested. The purpose of this paper is to 
estimate the relative error caused by a deformed mesh in comparison to the ideal mesh pattern. 
For this purpose, three typical problems with well-defined analytical solutions were selected. 
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ABSTRACT: Mesh quality is crucial for the stability, accuracy, and fast convergence of 
numerical simulations.  However, given the geometrical complexity of some models and the 
tools available for mesh creation, it is often necessary to accept meshes that deviate significantly 
from the known ideal shape.  Since mesh generation can be a very time-consuming process, it is 
also necessary to be able to judge if a given mesh will perform well enough for a given model or 
if more effort needs to be made to improve its quality.  There are many well-understood rules of 
thumb for judging mesh quality in Finite-Element applications, but these rules do not apply to 
the Lagrangian finite-volume with mixed-discretization approach used by FLAC

3D
 zones. The 

goal of this study is to determine simple metrics that allow a user to judge how deformed the 
initial shape of FLAC

3D
 zones can be before they begin to significantly affect the quality of the 

solution.
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The methodology and analytical solutions of these problems are discussed in the following 
section. 

2 PROBLEM STATEMENT AND ANALYTICAL SOLUTION 

2.1 Two-dimensional mesh assessment 

For testing two-dimensional mesh element quality, two traditional problems with well 
documented closed-form solution were selected. The detailed problem statements and analytical 
solutions are discussed below. All of these problems were chosen from the FLAC

3D
 manual 

(Itasca 2012). 

2.1.1 Cylindrical hole in an infinite Mohr-Coulomb material 
In this problem, stresses are determined numerically and analytically for the case of a cylindrical 
hole in an infinite elasto-plastic material subjected to in-situ stresses. The material is assumed to 
be linearly elastic and perfectly plastic, with a failure surface defined by the Mohr-Coulomb 
criterion. Associated flow rules (dilatancy = friction angle) are used in the simulation. The 
results of the simulation are compared with an analytic solution. This problem tests the Mohr-
Coulomb plasticity model with plane-strain conditions imposed in FLAC

3D
. The Mohr-Coulomb 

material is assigned the following properties (Table 1): 
 
 

Table 1. Material properties. 
__________________________________________________________________________________________________________ 

 Shear Bulk  Friction Dilation 
 Modulus Modulus Cohesion Angle Angle 
__________________________________________________________________________________________________________ 

 2.8 GPa 3.9 GPa 3.45 MPa 30º 30º 
__________________________________________________________________________________________________________ 

 
Stresses of 30 MPa were applied as initial conditions and to the far field, and the pressure 

inside the hole was neglected.  Remember that in FLAC
3D

 compressive stresses are negative. 
The radius (a) of the hole is small compared to the length of the cylinder, so plane-strain 
conditions are applicable. 

 

2.1.1.1 Closed-form solution 
The analytical solution of this problem was developed by Salençon (1969). The detailed solution 
can be found in the Verification Problems volume of the FLAC

3D
 manual (Itasca 2012). 

2.1.2 Rough strip footing on a cohesive frictionless material 
The classic “Prandtl’s Wedge” problem was selected for the second test of two-dimensional 
mesh element quality. Stresses were determined both numerically and analytically. Prediction of 
the collapse loads under steady plastic-flow conditions can be difficult for a numerical model to 
simulate accurately (Sloan and Randolph, 1982). As a two-dimensional example of a steady-
flow problem, we consider the determination of the bearing capacity of a strip footing on a 
cohesive frictionless material (Tresca model). The value of the bearing capacity is obtained 
when steady plastic flow has developed underneath the footing, providing a measure of the 
ability of the code to model this condition. The strip footing is located on an elasto-plastic 
material with the following properties (Table 2): 

 
 

Table 2. Material properties. 
__________________________________________________________________________________________________________ 

 Shear Bulk  Friction Dilation 
 Modulus Modulus Cohesion Angle Angle 
__________________________________________________________________________________________________________ 

 0.1 GPa 0.2 GPa 0.1 MPa 0º 0º 
__________________________________________________________________________________________________________ 
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2.1.2.1 Closed-form solution 
The bearing capacity obtained as part of the solution to the “Prandtl’s Wedge” problem is given 
by Terzaghi & Peck (1967) as: 

          (1) 

in which q is the average footing pressure at failure, and c is the cohesion of the material. The 
corresponding failure mechanism is illustrated in Figure 1. 

 

 
Figure 1. Prandtl mechanism for a strip footing. 

2.2 Three-dimensional assessment: 

For testing three-dimensional mesh elements quality, a smooth square footing problem was 
selected. The detailed problem statement and analytical solution are discussed below: 

2.2.1 Smooth square footing on a cohesive frictionless material 
This problem is concerned with the numerical and analytical determination of the bearing 
capacity of a smooth rectangular footing on a cohesive frictionless material (Tresca model). The 
footing of width (2a) and length (2b) is located on an elasto-plastic Tresca material. 

2.2.1.1 Closed-form solution 
The problem is truly three-dimensional. Although no exact solution is available, upper and 
lower bounds for the bearing capacity (q) defined as the average footing pressure at failure, have 
been derived using limit analysis (see, for example, Chen 1975). The upper bound, q

u
, is 

obtained using the failure mechanism of Shield & Drucker (1953), in the form of 

                
 

 
 
 

 
       

                
 

 
 
 

 
       (2) 

in which c is the cohesion of the material. The lower bound, q
l
, which corresponds to the bearing 

capacity of a strip footing, has the value 

            (3) 

3 ELEMENTS QUALITY CALCULATION: 

3.1 Aspect ratio 

We define Aspect Ratio as the ratio of the longest edge of an element to either its shortest edge 
or the shortest distance from a corner node to the opposing edge. This paper considers two 
loading directions, called pattern one and two. As seen in Figure 2, pattern one orients the longer 
edges vertically and pattern two orients them horizontally. 

For sensitivity analysis, 15 different aspect ratios between 1 (AS = 1) to 20 (AS = 20), where 

selected. To capture the effect of the number of zones and aspect ratios on the final results, each 

problem was repeated with 40 different mesh discretization patterns. A total of 2400 models 

were run for aspect ratio sensitivity analysis. 
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3.2 Orthogonality 

For each element, orthogonality is defined as the ratio of the smallest angle to the largest angle. 
The quantities compare the hexahedron to a perfect cube, which gives 1.0 for a cube, and 
approaches zero as pairs of edges approach being coplanar. Figure 3 shows the calculation of 
orthogonality. 

For sensitivity analysis, nine different orthogonality ratios, between one (OR = 1, 

representing a perfect cube) to 0.058 (OR = 0.058, represent α = 10 and β = 170), were selected. 

To capture the effects of the number of zones and orthogonality ratios on the final results, each 

problem was repeated with forty different mesh discretization patterns. A total of 1080 models 

were simulated for orthogonality sensitivity analysis. 
 
 

 
Figure 2. Aspect ratio and loading directions (pattern one and two) with respect to the orientation of the 
longest edge of an element to its shortest edge. 

 
 

 
Figure 3. Definition of the orthogonality. 

3.3 Element shape 

Four typical element shapes were considered: brick, wedge, pyramid and tetrahedron. In 
FLAC

3D
 uses a mixed discretization technique to overcome overly stiff elements and give 

elements more volumetric flexibility without introducing unconstrained degrees-of-freedom. In 
mixed discretization a zone (element) is made of an assembly of two overlapping groups of nt 

tetrahedrons, as illustrated in Figure 4 (for the case nt = 5) (Itasca 2012). Bricks, wedge, 
pyramids, and tetrahedra are assemblies of ten, six, four, and two tetrahedra, respectively. Since 
this drastically changes the actual computational cost for the same number of elements of 
different types, the number of internal tetrahedra per-volume of interest (NTV) was calculated 
and used for comparison. 

To capture effects of the number of zones and element shapes on the final results, each 
problem was repeated with forty different mesh discretization patterns. A total of 480 models 
were run for element shapes sensitivity analysis. 
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Figure 4. Brick element zone with 2 overlays of 5 tetrahedra in each overlay (Itasca 2012). 

4 MODEL DEVELOPMENT 

Three models were simulated for mesh sensitivity analysis. Relative error and absolute error are 
used to compare the results of the three models. Assuming cubic mesh elements as an ideal 
mesh pattern (with zero error), relative error (RE) is defined as an additional error due to change 
of element shape and absolute error is the discrepancy between the close form solution and 
numerical results. Table 3 summarizes each model. 
 
Table 3. Matrix of models analyzed. 
__________________________________________________________________________________________________________ 

Model name Model Method Description  
__________________________________________________________________________________________________________ 

Cylindrical Hole  Model 1 -Two-Dimensional  -Mohr-Coulomb Material 

  -Analytical -Aspect ratio, orthogonality and element shape test 
__________________________________________________________________________________________________________ 

Rough Strip Model 2 -Two-Dimensional  -Cohesive Frictionless Material 

Footing  -Analytical -Mohr-Coulomb Material 

   -Aspect ratio, orthogonality and element shape test 
__________________________________________________________________________________________________________ 

Smooth Square Model 3 -Three-Dimensional -Cohesive Frictionless Material 

Footing  -Analytical -Mohr-Coulomb Material 

   -Aspect ratio, orthogonality and element shape test 
__________________________________________________________________________________________________________ 

4.1 Model 1  

This model is defined by the domain sketched in Figure 5a. The symmetric nature of the 
problem allows us to model one quarter of the geometry. The far x- and z-boundaries are 
situated at a distance of five hole-diameters from the axis of the hole. The thickness of the 
domain is selected as one-tenth of the hole diameter. The boundary conditions applied to this 
domain are sketched in Figure 5b, and they include a stress boundary of 30 MPa on the far field 
surfaces. The region of interest is calculated as shown in Figure 5b. The model starts with a 
uniform stress of 30 MPa throughout the domain and then the hole is removed.  

 

 
Figure 5. a) Domain for model 1simulation – quarter symmetry, b) boundary conditions for model 1 and 
illustration of zone of interest – quarter symmetry. 
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4.2 Model 2  

For this problem, half-symmetry and plane-strain conditions are assumed in the numerical 
simulation. The domain used for the analysis is sketched in Figure 6a. The area representing the 
strip footing has a half-width (a), the far x-boundary is at a distance of 20 m from the y-axis of 
symmetry, and the far z-boundary is located 10 m below the footing. The thickness of the 
domain is selected as 1 m. The boundary conditions applied to this domain are shown in Figure 
6b. The displacement of the rough footing is restricted in the y-direction, and a velocity with the 
magnitude of 0.5 × 10

−5
 m/step is applied to the model in the negative z-direction to simulate the 

footing load. Prandtl’s plastic equilibrium theory was used for calculating the region of interest, 
and for the sake of simplicity, the plastic zone is assumed to be rectangular (Fig. 6b). 

 

 

 
Figure 6. a) Domain for model 2simulation – half symmetry, b) boundary conditions for model 2 and 
illustration of zone of interest– half symmetry. 

 

4.3 Model 3 

For this problem, the footing is square and represented by an area with half-width (a) and (b = 
a). The symmetric nature of the problem allows us to model one quarter of the geometry, and a 
parallelepiped domain of 15 m × 15 m × 10 m (as depicted in Fig. 7a) is used in the numerical 
simulation. The boundary conditions applied to this domain are sketched in Figure 7b. The 
displacements of the far x-, y- and z-boundaries are restricted in all directions and the 
displacements of the symmetry boundaries corresponding to the planes at x = 0 and y = 0 are 
restricted in the x- and y-directions, respectively. Displacements are free in the x- and y-
directions and a velocity with the magnitude of 2.5 × 10

−5
 m/step is applied in the positive z-

direction to grid points within a 3 m × 3 m area to simulate loading of the footing. For the 
applied velocity loading, the bearing area is assumed to extend to half the distance between the 
last applied grid point and the next grid point. In this model, then, a = 3.5 m and b = 3.5 m (Fig. 
7b). 

 

 

 
Figure 7. a) Domain for model 3simulation – quarter symmetry, b) boundary conditions for model 3 and 
illustration of zone of interest– quarter symmetry. 
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5 RESULTS AND DISCUSSION  

5.1 Cylindrical hole in an infinite Mohr-Coulomb material (model 1) 

The effects of aspect ratio, orthogonality and element shape in a typical cylindrical geometry 
were analyzed. Fifteen aspect ratios (AR = 1 to 20), nine orthogonality ratios (OR = 1 to 0.058) 
and four element shapes (brick, wedge, pyramid and tetrahedron) with different mesh densities 
(NTV = 5 to 123) were selected. Figure 8 shows a typical comparison between FLAC

3D
 results 

and the analytical solution along a radial line with AR = 1 and NTV = 50.  Normalized stresses 
(-σr/P0 and -σθ/P0) are plotted versus the normalized radius, r/a. The average relative error on the 
stresses and displacements is less than 1.5%. 

 

 

 
Figure 8. Stress and plastic zone comparison between and analytical and FLAC

3D
 solution. 

 
 
Figure 9a shows the relative error of the radial stress versus different values of aspect ratios 

for NTV of 10, 20, 30 and 50. For comparison, it is assumed that a mesh element with AR = 1 
(equal size element) is an ideal mesh with relative error of zero. The results show that relative 
error remains less than 5% when AR increases from 1.0 to 7.5. Increasing NTV (mesh density) 
does not improve the problem resolution significantly. In the case of a coarse mesh (NTV = 10) 
relative errors are between 5% and 10% for AR = 6.0 to 15.0, but relative errors increase 
significantly for AR values more than 12.5. For relatively fine meshes (NTV = 20 and 30) 
relative errors are less than 10% for a range of AR from 1.0 to 15.0, but this value increases 
significantly when AR exceeds15.0. For an extremely fine mesh (NTV = 50), relative errors 
remain below 10% even for AR = 20.0. 

Figure 9b shows the relative error of the radial stress versus different orthogonality ratios 
(OR) for NTV values of 10, 20, 30 and 50. For comparison, it is assumed that a mesh element 
with OR = 1.0 (corresponding to right angle) is an ideal mesh with relative error of zero. The 
results show that relative error remains below 5% as OR varies from 1.0 to 0.38 (corresponding 
to an acute angle of 30 degrees). Increasing the NTV (mesh density) does not improve the 
accuracy of the results significantly. However, for OR values less than 0.44 (or acute angle of 
less than 40 degree) the relative error increases significantly.   

Figure 9c shows the absolute error (the numerical analysis results are compared with the close 
form solution results) in the radial stress versus different mesh element shapes for NTV values 
of 10, 20, 30, 50 and 60. The results show that the brick element shape yields the lowest 
absolute error and a tetrahedral element produces the largest error. Between wedge and pyramid 
mesh shapes, wedge element shows slightly better performance. By choosing an appropriate 
mesh density (in this problem NTV ≥ 30) the absolute error is less than 5% for the three mesh 
shapes of brick, wedge and pyramid. However, tetrahedral elements perform poorly even with 
an extremely fine mesh size (error = 15% for NTV = 60). 
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Figure 9. a) Aspect ratio sensitivity analysis for cylindrical hole in an infinite Mohr-Coulomb material, b) 
Orthogonality sensitivity analysis for cylindrical hole in an infinite Mohr-Coulomb material, c) Element 
shape sensitivity analysis for cylindrical hole in an infinite Mohr-Coulomb material. 

 

5.2 Rough strip footing on a cohesive frictionless material (model 2) 

The effects of aspect ratio, orthogonality and element shape in a typical strip foundation 
problem were analyzed. Fifteen aspect ratios (AR = 1 to 20), nine orthogonality ratios (OR = 1 
to 0.058) and four element shapes (brick, wedge, pyramid, and tetrahedron) with different mesh 
densities (NTV = 5 to 93) were selected. The load-displacement curve corresponding to the 
numerical simulation is presented in Figure 10, where p-load is the normalized average footing 
pressure (p/c) and c-disp is the magnitude of the normalized vertical displacement (uz/a) at the 
center of the footing. The numerical value of the bearing capacity (q) is 515.0 kPa, and the 
relative error is 0.2% when compared to the analytical value of 514.2 kPa.  

 

 

 

 

 
 
Figure 10. Stress and plastic zone comparison between an analytical and FLAC

3D
 solution. 
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The effect of the angle of load direction compared to the direction of the longest edge of an 
element or its shortest edge is unknown (pattern one and two section 3.1). To test this, the 
vertical load in the pattern one and two is applied perpendicularly to the shortest and the longest 
edge of elements, respectively. Figure 11a, b show the relative error of the vertical stress versus 
different values of aspect ratio for patterns one and two. The magnitude of relative error is 
almost similar for pattern one (Fig. 11a) and the same data for the model 1 (Fig. 9a). 
Comparison of patterns one and two shows that the relative error is more sensitive to the mesh 
density (NTV) in pattern 2 (Fig. 11b). In other words, when the load is applied in the direction 
of the shortest edge of the element, a finer mesh size is needed to reach an acceptable error 
(5%). 

Sensitivity analysis to different OR and element shape is presented in Figures 12a, b. The 
results (absolute error value) are similar to the model 1. 

 
 
 

 

Figure 11. a) Aspect ratio sensitivity analysis (pattern one) for rough strip footing in an infinite Mohr-
Coulomb material, b) Aspect ratio sensitivity analysis (pattern two) for rough strip footing in an infinite 
Mohr-Coulomb material. 

 
 
 

Figure 12. a) Orthogonality sensitivity analysis (pattern one) for rough strip footing in an infinite 

Mohr-Coulomb material, b) Zone shape sensitivity analysis (pattern one) for rough strip footing 

in an infinite Mohr-Coulomb material. 
 

5.3 Smooth square footing on a cohesive frictionless material (model 3) 

This problem simulates the 3-dimentional effect of aspect ratio, orthogonality and element shape 
in typical smooth square footing problem. Fifteen aspect ratios (AR = 1 to 20), nine 
orthogonality ratios (OR = 1 to 0.058) and four element shapes (brick, wedge, pyramid and 
tetrahedron) with different mesh densities (NTV = 5 to 63) were selected. The velocity contour, 
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plastic and load-displacement curve corresponding to the numerical and analytical simulation 
for AR = 1 and NTV = 50 is presented in Figure 13, in which p-load is the normalized average 
footing pressure (p/c), p-sol is the normalized upper bound value for the bearing capacity (qu/c) 
and c-disp is the normalized vertical displacement (uz/a) at the center of the footing. The 
numerical value of the bearing capacity is 541 kPa. This value is sandwiched between the 
theoretical upper-bound value of 571 kPa and lower-bound value of 514 kPa (Equation 2). 

 
 
 

 

 
Figure 13. Stress and plastic zone comparison between and analytical and FLAC

3D
 solution. 

 
 
 
 
 
Figure 14a shows the relative error of the vertical stress versus different value of aspect ratios 

for the NTV values of 10, 20, 30 and 50. For comparison it is assumed that a mesh element with 
AR = 1 (equal size element) is an ideal mesh with relative error of zero. The results show that 
relative errors remains below 5% when AR increases from 1.0 to 3.0. By increasing the mesh 
density to an NTV of 50 the relative error decreases significantly. In the case of a coarse to a 
relatively fine mesh size (NTV = 10 to 30) the relative error is between 5% and 10% for AR = 
2.5 to 8.0. For an extremely fine mesh (NTV = 50) relative errors remain below 10% up to an 
AR of 15.0. 

Figure 14b shows the relative error (the numerical analysis results are compared with the 

close form solution results) of the vertical stress versus different orthogonality ratios (OR) for 

the NTV values of 10, 20, 30 and 50. For this comparison it is assumed that a mesh element 

with OR= 1.0 (corresponding to right angle) is an ideal element with relative error of zero. The 

results show that relative error is sensitive to mesh density; for the coarse mesh (NTV = 10) this 

value remains below 5% as OR varies from 1.0 to 0.65 (corresponding to an acute angle of 58.5 

degree) and for the fine mesh (NTV = 20-50) as OR varies from 1.0 to 0.25 (corresponding to an 

acute angle of 22.5 degree). However, for OR values less than 0.25 (or acute angles of less than 

22.5 degree) the relative error increases significantly.   
Figure 14c shows the absolute error of the vertical stress versus different mesh element 

shapes for NTV values of 10, 20, 30, 50 and 60. The analyses show that the accuracy of results 
is extremely sensitive to mesh density. In coarse meshes (NTV = 10) brick element shapes yield 
a 20% error while tetrahedral elements yield an error of 65%. The brick element shape has the 
lowest absolute error and tetrahedral has the largest error. Between wedge and pyramid mesh 
shape wedge elements shows a slightly better performance. Tetrahedral mesh elements perform 
poorly even with an extremely fine mesh size (an error of 17% for NTV = 60). 
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Figure 14.  a) Aspect ratio sensitivity analysis (pattern one) for rough strip footing in an infinite Mohr-
Coulomb material, b) Orthogonality sensitivity analysis (pattern one) for rough strip footing in an infinite 
Mohr-Coulomb material, c) Zone shape sensitivity analysis (pattern one) for rough strip footing in an 
infinite Mohr-Coulomb material. 

 

6 SUMMARY AND CONCLUSION 

Several tests were performed to analyze mesh quality in FLAC
3D

 software. The effect of 
different aspect ratio (AR), orthogonality ratio (OR) and mesh element shapes on the final 
solution and an estimate of the error that the user may expect were reported (Table 4).  

 
 

Table 4. Relative error for different range of AR and OR. 
__________________________________________________________________________________________________________ 

  Aspect Ratio (AR) Orthogonality (OR)   

Relative Error Mesh density 2-D 3-D 2-D 3-D 
__________________________________________________________________________________________________________ 

< 5 % NTV = 20 (1.0-5.0) (1.0-3.0) (1.00-0.28) (1.00- 0.28) 

 NTV = 50 (1.0-7.5) (1.0-8.0) (1.00-0.26) (1.00-0.18) 
__________________________________________________________________________________________________________ 

5- 10% NTV = 20 (5.0-15.0) (3.0-7.5) (0.26-0.12) (0.26-0.15) 

 NTV = 50 (7.5-17.0) (8.0-15.0) (0.28-0.17) (0.18-0.10) 
__________________________________________________________________________________________________________ 

10-15% NTV = 20 (15.0-17.5) (7.5-15.4) (0.12-0.08) (0.15-0.08) 

 NTV = 50 (17.0-20.0) (15.0-18.2) (0.17-0.15) (0.10-0.07) 
__________________________________________________________________________________________________________ 

15% < NTV = 20 < 17.5 < 15.4 0.08 > 0.08 > 

 NTV = 50 < 20.0 < 18.2 0.15> 0 0.07 > 
__________________________________________________________________________________________________________ 

 
 
The following comments summarize the results shown in Table 4: 

 Relative error remains low (less than 5%) for aspect ratio of (1.0 to 7.5) and (1.0 to 3.0) for 
2-dimentional and 3-dimentional problem, respectively. This value is between 5% to 10% for 
aspect ratio of (7.5 to 15) and (3.0 to 10) for 2-dimentional and 3-dimentional problem, 
respectively. Using an aspect ratio outside this range requires a very dense mesh pattern. 
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 Relative error remains low (less than 5%) for orthogonality ratio of (1.0 to 0.38) and (1.0 to 
0.65) for 2-dimentional and 3-dimentional problem, respectively. Using an orthogonality 
ratio outside this range increases the relative error significantly. Mesh density (NTV) does 
not improve the problem resolution significantly.  

 Brick element mesh shape has the lowest absolute error and tetrahedral has the highest. 
Between the wedge and pyramid mesh shape wedge elements show slightly better 
performance. Tetrahedral mesh elements perform poorly even with the extremely fine mesh 
size. 
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