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The problem. Waste Decay
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Dose-response relationships for solid cancer, Alternative hypothetical extrapolations of 
d th t f hi h t
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all types combined, in atomic bomb survivors, 
1958-1987 (from UNSCEAR, 1994)

cancer death rate curves from high to
low radiation dose rates
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R f

Risk of death from radiation

Global 
Dose rates 
from Natural 
Background 
Radiation  

  

 

Source of Exposure
Cosmic Rays

Terrestrial Sources

Radionuclides in Body

0.39
2.0

0.46
4.3

0.23

Typical Elevated
Dose Rate (mSv/year)

Average Global Effective
Dose Rate (mSv/year)

Reference:
ICRP, 1999. "Protection of the 
Public in Situations of Prolonged 
Radiation Exposure," Publication 
82, Annals of the ICRP, Vol. 29, 
Nos. 1-2, International Radiation                       

 

(except Radon)
Radon and its

Decay Products

0.6
1.3

10.0

Total Global Dose Rate From 2 4 ( d d)

Commission on Radiological 
Protection, Pergamon Press, New 
York, NY.  Table A.1, page 73, 
and Table A.2, page 74.

 

 Area 

States of Rio de Janeiro
Espirito Santo, Brazil    

       ~30 (3.6 average)
 

Total Global Dose Rate From 
Natural Background Radiation 2.4 (rounded)

Monazite sand; coastal

Examples of 
Areas with 
High Natural 

sp o S o,  

 
Volcanic intrusions in 6 km   scattered inland areas

       ~80 (13.3 average) 
 

Kerala and Tamil nadu
India  

Central Region
f F

 
Granitic schistous and sandstone

        ~6
 

Mineas Gerais and
Goias, Brazil

Monazite sand; coastal area, 200 km long and 0.5 km wide
      ~30 (9 average)

2

g
Background 
Dose Rates

of France Granitic, schistous and sandstone  

Niue Island
(Cook Islands, NZ)

 

 

        ~5  

Mombasa
Kenya

 
Thorium bearing carbonalyte

      ~30
 

Ramsar 200 

Volcanic soil

Maximum Total Dose Rate (mSv/year) 
Characteristics of Area

Ramsar
Iran

 
Areas of radium-226 deposition from spring water 

   ~200

Mahallat
Iran

       ~20  
Areas of radium-226 deposition from spring water 



Dose as a function of tume, for SF, for a number of different 
realisations including those that gave the highest (samplerealisations, including those that gave the highest (sample 
164) and the lowest (sample 151) dose maximum out of 1000 
realisations.

The Base Case is included to allow an easy comparison. The 
other curves represent realisations that give the highest dose 
maximum or the lowest dose maximum in the period between 
10 and 10 ears or 10 and 10 ears respecti el The bars4 5 6 710   and 10   years or 10   and 10   years, respectively. The bars 
beneath the graph indicate the radionuclides that make the 
highest contribution to dose at any particular time.

4 5 6 7

Predicted Performance of a Repository in Opalinus Clay Spent Fuel 
—from  02-05, p.229NAGRA Technical Report



“One small step for geology, one giant leap for rock mechanics”

Pre-closure Isolation

A f th E th

• Engineering Problem

Age of the Earth
       (years)10 10 10 10 100 2 4 6 8

 Engineering Problem

Unprecedented Period of Time

Requires Improved Scientific BaseRequires Improved Scientific Base

Periods of Isolation. Geological Isolation Time Scales.



“We don’t know the rock mass strength. That is why we need an International Society” Muller, 24 May 1962

Deformation
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“In the field of geomechanics, granular media and block-jointed rock
masses are obvious examples where the concept of the ideal physical
continuum −one in which no gaps are formed− cannot be expected to 

l h l d l ff l happly... The clastic model offers an alternative approach. 

Indeed, it is this writer’s view  that only with clastic models or some 
further development thereof can the problem of predicting the 
complete load-deformation behaviour of solids be tackled 
optimistically.”

D.H. Trollope (1968)p ( )



Choose a geologically simple, stable site!
(low tectonic strain rate)

Geological Isolation

Overlying and underlying strata:
Flat terrain

Borehole

Overlying and underlying strata:
- Infrequent joints/faults.
- Far-field stresses close to isotropic.
- Groundwater discharge to large body of 
   non-potable water (ocean, sea).

σ σ

σ

h v

v

= k 
(k   1)~

>200 m Repository stratum, simple host medium::
- Low permeability.
- Low hydraulic gradient.
- High ion-exchange potential.

Establish and close the repository

Backfill EDZ (excavation 
disturbed zone)
surrounds seal 
and backfillDetail of

seal and

Seal
Seal1 mm gap

seal and
backfill

0 5
Exothermic

Seal1 mm gap

90

K
K

10
10

Hydraulic Conductivity

no gap

1mm gap

~
~

-9

-3
m/s
m/s

o

0.5 m

Drift and
canister

Backfill 2.5 m
g p

Compaction (6%) due to particle
friction reduction after t~10,000 years



Rock Charac eteris ticsRock Type

P bi lit I E h Therm al St th D tilit

Clay Low

Salt Low

Very Low

Im perme able

Permeabi lity

Very High

None

Ion Exchange

Low

High

Therm al
Conducti vity

Strength

High

High

Ductility

++ − − +

Crystalline High

Volc anic Tuff Low

p

Matrix Low
Fractures High

High

Usually
None

High

g

Variable

Low

g

Low

Moderate

+

ο

−

+

−

−

ο

−+ +

−ο +

+

Current Research (and Operational) Sites

Clay Indurated Bure, Franc e
Mont Terri, Switzerland

ο + − − ο

,
Benken, Switzerl andNon-Indurated

Mol, BelgiumSalt Domal
Gorleben, Germany

Bedded WIPP, Carlsbad, NM, USA
(intermediate level ope rational)

Be low water table:
Re ducing environment.

( p )
Crystalline Unfractured Granite Pinawa, Manitoba, Canada

Fractured Granit e Aspö, Sweden, F inland 
(cons truction approved May 2002)

Volcanic Tuff Yucca Mountain NV USA Above water table:Volcanic Tuff Yucca Mountain, NV,  USA 
(license applicati on construct  Dec 2004)

Preferred Respository Host Rocks and Current Research Sites

Oxidizing environment.
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• Rock testing (and prediction)

Some specific issues

• Rock testing (and prediction)

- samples     →  coring, slotting
- full scale → underground excavations

• Excavation technology

full scale   →  underground excavations

• Excavation damage
• Time dependent deformation /rock mass strength
• Transparent earth• Transparent earth
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Discing of a 1.3 m diameter core from highly stressed rock (Courtesy of URL/AECL, Canada)



N N

55
45o

o

σ

σσ

σ

σ

σ 22

2112

11

2

1

= 45 MPa

= 60 MPa

σ
σ

σ σ

σσ
2

22

21

2112

12

σσ 111

SE SENW NW

Direction
of advance

Direction
of advance

65
  

 60 60

65 65

70 70

Tunnel parallel to Tunnel at ~10   toσ

σ σσ σ− −

σ2

1 12 2

2
o

contours contours

Asymmetric breakout produced by shear stresses acting parallel to excavation (R.S., Read, 1995)
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−Contours of Maximum Shear Stress                  developed during slotting of a rock block
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slot 
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slot 
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1.0

0.0

vertical
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σ σ σ1 3 oNote: Results are for = =



Wire saw slotting tool (Courtesy of URL/AECL, Canada)
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Slotting technique proposed by Kvapil (1962) to increase the 
stability of ‘critical’ underground excavations (e.g., intersections)
in highly stressed rock.



Tunnel Near-field. Disintegration of EDZ

σc = 13 MPa σc = 30 MPa
water circulated in inner borehole dry inner borehole

c  13 MPa

σ σ

c

σ σc c

Effect of water on the EDZ in the Opalinus Clay, Mont Terri, Switzerland (Courtesy of )



Bulkhead Open Drift
8.0 1.5 5.0

1 81.8

7.01.5
3.0

5.7
9.0 1.0

Permeability [m/s]

10-21 10-20 10-19 10-18 10-17 10-16 10-15

ALOHA2: Permeability Distribution Around the Bulkhead Drift (Courtesy of )



F
F

TBM Disc CMM Disc
(undercutting)

Excavation face

Excavation 
face

(undercutting)

Plastic region Plastic 
region

Probable
chip path

Excavation
face

Note: Tensile crack can not propagate 

Unstable
crack 
propagation

Stress distribution beneath a TBM Disc Indenter
after the stable vertical crack has developed

Crack path produced by
CMM Disc Indenter

Disc tip
radius

CMM Indenter Force (N/mm of contact length)

S = 25 mm S = 50 mm S = 100 mm S = ∞

until plastic region reaches critical size

6 mm

8 mm

12 mm

1,700 (74%) 2,310 (100%)

2,500 (100%)

3,150 (100%)

2,700 (117%)

3,150 (126%)

3,600 (114%)

3,000 (130%)

(3,500?) (140%?)

4,200 (133%)

N t I d t F I i ll f l i i tti d th SNote: Indenter Force Increase is small for large increase in cutting depth S.

Comparison of chip formation in classical TBM and in CMM (undercutting)
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Indentation F

Force F
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π
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θ

T

Infinite 

= fracture toughness
= pre-existing crack 

= tensile strength of rock (q/K  )
= unconfined compressive strength Mohr Coulomb

Force, F

λ'
K T

q
i pθ

λ   length in rock = (1+sin    )/(1 sin   )− φφ

φ = friction angle 

Mohr-Coulomb
materialKp

Relationship between applied force on an indenter and the length of edge crack ( ) beneath 
the plastic crushed zone

λ



WIRTH-HDRK Continuous Mining Machine (CMM)



Rock cuttings produced by CMM
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“Harmonic Hole”       Optimum shape of hole to minimize the extent of excavation damage?
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“Harmonic Hole”       Effect of thermal load on excavation damage



(a) (b)

(c) (d)

“Harmonic hole” - Kolar Gold Fied (Caw, 1956)



a)

b)

(a) Empirical stand-up time relations for tunnels as a function of span and(a) Empirical stand-up time relations for tunnels as a function of span and
 rock quality defined by the Rock Mass Rating System; (b) Theoretical
 stand-up time based on joint  strength deterioration with time (after
 Fakhimi 1992).



Fracture mechanics models, a) single rock bridge under far field
normal and shear stresses; b) multiple rock bridge under far fieldnormal and shear stresses; b) multiple rock bridge under far field
normal and shear stresses.

Cohesion and safety factor as a function of time.From Kemeny, 2003



Constitutive behavior at contact 
between two particles

Linear contact law
Contact law

Kn UnFn .=F

F

F

n

n
cbond

breaks

(tension)
Slip condition

n
Ks Us

F

F

F

F n

s

s

s

.

=

=Δ Δ

Fnμ

1

Kn

U

contact bond
Deformation is assumed to occur
at contact point only.

Un

Un

slip model
(overlap)

contact

Contact bond Parallel bond
2r

Fs
contact 
bond

Fs
max

1

Ks n

Us

slip model
when U   > 0

Models adhesion over vanishingly
small area of contact point (does not 
resists bending moment); breaks if
normal or shear force exceeds 
bond strength.

Models additional material 
deposited after particles are in 
contact (resists bending moment); 
breaks if normal or shear stress 
exceeds bond strength.

s

Particulate mechanics (PFC -Cundall and Potyondy)



Parallel-bonded stress corrosion modelParallel bonded stress corrosion model

2 r(t)Stress-dependent corrosion  reaction occurs at 
micro-tension sites.

v
Corrosion reaction occurs at the periphery of 
parallel bonds and removes bond material

vReaction rate is determined by local 
driving force and local energy barrier.

1) Driving force: bond stress (sigma)
2) Energy barrier: micro-activation stress (sigma_a)

Express corrosive-front velocity as:

v  =
v  =

β 1
β 2 ( c)/σσe

0    if  sigma < sigma_a

PFC simulation of time dependent weakening of rock



Cluster of particles

Compression testp
on assembly of
particles

PFC model of a particulate assembly (rock) and compression loading
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Static Fatigure Curves used as input to the UDEC analysis of collapse  over time at Yucca Mountain



MagnitudeMagnitude
of displacements
[meters]

0.0

After 1 year After 100 years

0.25

> 0.5

Collapse predicted around 

After 1,000 years After 10,000 years

drifts over 10,000 years at 
Yucca Mountain assuming  
Category 2 Tuff Static 
Fatigue Curve.
Note: thermal and seismic 
effects have not been 
considered.



MagnitudeMagnitude
of displacements
[meters]

0.0

After 1 year After 100 years

0.25

> 0.5

Collapse predicted around 

After 1,000 years After 10,000 years

drifts over 10,000 years at 
Yucca Mountain assuming  
Category 2 Lac du Bonnet 
Static Fatigue Curve.
Note: thermal and seismic 
effects have not been 
considered.
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Observed variability of normal stress across a thrust fault at the URL, Pinawa,Canada.
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Prediction of long-term (50~100 yr) behaviour of Pillars and Large Excavations in abandoned mines



Log10 seismic
moment

7.3

Time

55 days

Log10 seismic
momentTime

Mar 2 10:51 1992
Feb 27 00:32
Feb 22 14:14
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3 9
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3.45
3 00

Feb 18 03:56
Feb 13 17:38
Feb 9 07:20
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C l iConclusions

• Remarkable and continuing computational and• Remarkable and continuing computational and 
observational advances.

• Predictive models should build from empirical rules; p ;
rationalize and extend them.

• Advances will benefit all of rock mechanics.

• Waste isolation offers unprecedented opportunity to 
“know” the rock mass —Professor Müller’s prime 
concern.concern.
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