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The problem. Waste Decay
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Alternative hypothetical extrapolations of
cancer death rate curves from high to
low radiation dose rates
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Dose-response relationships for solid cancer,
all types combined, in atomic bomb survivors,
1958-1987 (from UNSCEAR, 1994)
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Risk of death from radiation

Source of Exposure : Reference:
Globd ounic Ravs | 09 a ggi;aggg'(?ﬁgvfzgf;'ve ICRP, 1999, "Protection of the
Dose rates oSmic Rays '. 20 / Public in Situations of Prolonged
. B Typical Elevated Radiation Exposure," Publication
Terrestrial So | 0.46 !
gg::?(g'\r'fu”r:g' CITESING SOUTEES o 23 Dose Rate (mSv/year) 82, Annals of the ICRP, Vol. 29,
Radiation Radionuclidesin Body | 0.23 Nos. 1-2, International
(except Radon) 1 0.6 Commission on Radiological
Radon and its I 13 Protection, Pergamon Press, New
Decay Products s 10.0 York, NY. TableA.1, page 73,
and TableA.2, page 74.
Total Global Dose Rate From
Natural Background Radiation W 2.4 (rounded)
Area
States of Rio de Janeiro s 30 (3.6 average)
Espirito Santo, Brazil Monazite sand; coasta
Mineas Gerais and GGG 80 (13.3 average)
Goias, Brazil Volcanic intrusionsin 6 km?2 scattered inland areas
i I -30(9
ixampl eShOf Kerala and TamH |r;ladcil; Monazite sand; coastal area, 200 km Iong(; aﬂa\éek':rl?rgsv)lde
reas wit
gla%rll I\rlgtl':gl Centrg]f I?:?grllgg Gr—anitic, ;cgstous and sandstone
g Niveldand m® ~5 B Maximum Total Dose Rate (mSv/year)

Dose Rates (COOk Isllalr'_lﬁs Iﬂg) Vol canic soil Characteristics of Area

Mombasa mEEEE————— -30
K enya Thorium bearing carbonalyte

Ramsar I 200
Iran Areas of radium-226 deposition from spring water

Mahallat I -20

Iran Avreas of radium-226 deposition from spring water
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highest contribution to dose at any particular time.

Predicted Performance of a Repository in Opalinus Clay Spent Fuel
—from NAGRA Technical Report 02-05, p.229



“Onesmall step for geology, one giant leap for rock mechanics’

Pre-closure | solation
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 Engineering Problem
Unprecedented Period of Time
Requires Improved Scientific Base

Periods of |solation. Geological Isolation Time Scales.



“We don't know the rock mass strength. That is why we need an International Society” Muller, 24 May 1962
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“In the field of geomechanics, granular media and block-jointed rock
masses are obvious examples where the concept of the ideal physical
continuum —one in which no gaps are formed— cannot be expected to
apply... The clastic model offers an alter native approach.

Indeed, it isthiswriter’sview that only with clastic models or some
further development thereof can the problem of predicting the
compl ete |oad-defor mation behaviour of solids be tackled
optimistically.”

D.H. Trollope (1968)



Geological Isolation

Choose ageologically simple, stable site!

(low tectonic strain rate)

Flat terrain
- Borehole
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Establish and close the repository

Seal

Exothermic

N\

Backfill

Drift and
canister

Detail of
seal and

Overlying and underlying strata:

- Infrequent joints/faults.

- Far-field stresses close to isotropic.

- Groundwater discharge to large body of
non-potable water (ocean, sea).

Repository stratum, simple host medium::

- Low permeability.
- Low hydraulic gradient.
- High ion-exchange potential.

_ EDZ (excavation
Backfill disturbed zone)
surrounds sed
and backfill

Sesl

05m

Hydraulic Conductivity

Knogw ~109m/s
K immgap ~ 103 m/s

Compaction (6%) dueto particle
friction reduction after t~10,000 years



Rock Type Rodk Chaeceteristics

Permesbility  lon Exchange | rhema Strength Ductil
y g Conducti vity g v
Clay Very Low Very High Low Low High
A A - - 4+
Salt Impameade None High Low High
+ - + - +
Crystdline Matiix LOYV - Usudly Variable High Low
Fractures High _ None  _ - " _
Volcanic Tuff High High Low Low Moderate
(o) + — = 0
Current Research (and Opeational) Sites
Qay Indurated Bure, France
Mont Terri, Switzedand
Non-Indur ated Benken, Switzerl ad
Salt Domad Mol, Bdgium
Gorleben, Germany Below water table
Bedded WIPP, Carlsbed, NM, U SA Reducing ervironment.

(intermediateleved operatonal)
Crystdline Unfractured Granite Finaw a, M anitoba, Canada

Fractured Granite A0, Sweden, Finland
(construction approved May 2002)

Above water table:

Volcanic Tuff YuccaMountain, NV, USA L .
Oxidizing environment.

(licenseapplicati on construct Dec 2004)

Wwy

Preferred Respository Host Rocks and Current Research Sites



Some specific issues

* Rock testing (and prediction)

- samples — coring, slotting
- full scale — underground excavations

Excavation technology

Excavation damage

Time dependent deformation /rock mass strength
Transparent earth
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Unloading path effects on coring,
slotting and underground excavation

(3) (@) Coring (surface or underground)
(b) Slotting (block center)
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Gt/OCo

Potential for core damage during
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Gc compressive strength M aximum Maximum
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i induced tension in core
Let m= Ot =
Co in-situ horizontal stress Ot/Go Ct/Co
[m ~ 0.5] 0.0 0.0
Then core damage occurs if 05 05
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i.e, co> 0.20¢
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Discing of a 1.3 m diameter core from highly stressed rock (Courtesy of URL/AECL, Canada)



Direction
of advance

Direction \
of advance
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(¢) 1— (¢) 2
contours

contours

Tunnel parallel to o, Tunnel at ~10°to o,

Asymmetric breakout produced by shear stresses acting parallel to excavation (R.S., Read, 1995)



Contours of Maximum Shear Stress
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Wire saw slotting tool (Courtesy of URL/AECL, Canada)




W,y = Stiffness of excavated slot (N)
[dlot can be left open or backfilled]

Wg = Rock stiffness

Slotting technique proposed by Kvapil (1962) to increase the
stability of ‘critical’ underground excavations (e.g., intersections)
in highly stressed rock.



Tunnel Near-field. Disintegration of EDZ

6¢c =13 MPa 6c =30 MPa

water circulated in inner borehole dry inner borehole
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Effect of water on the EDZ in the Opalinus Clay, Mont Terri, Switzerland (Courtesy of nagr d"':!!WH"' )



8.0 1550

Bulkhead I_ Open Drift
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ALOHA2: Permeability Distribution Around the Bulkhead Drift (Courtesy of GRS )



F
Excavation face l .
TBM Disc

Plastic region

Probable
chip path

Stress distribution beneath aTBM Disc Indenter
after the stable vertical crack has devel oped

Excavation
face

Unstable
crack
propagation

Note: Tensile crack can not propagate
until plastic region reaches critical size

CMM Disc
(undercutting)

face

Disc tip CMM Indenter Force (N/mm of contact length)
radius S=25mm | S=50mm | S=100mm S=
6 mm 1,700 (74%) | 2,310 (100%) | 2,700 (117%) | 3,000 (130%)
8 mm 2,500 (100%) | 3,150 (126%) | (3,5007) (140%?)
12 mm 3,150 (100%) | 3,600 (114%) | 4,200 (133%)

Note: Indenter Force Increase is small for large increase in cutting depth S.

Comparison of chip formation in classical TBM and in CMM (undercutting)

| Excavation

Crack path produced by
CMM Disc Indenter
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CMM

Indentation J =
<
= .
o) L/A increases
c — T
& \ /
3
®© Stable crack propagation -
) (F increases as A increases) FZ):)?]SS ¢ i
L Stable crack propagation flaw / A
(F decreases as A increases) crack
= Kio -
nT? TBM
Indentation J =
Force, F -
\ / Infinite ——
Kip = fracture toughness T =tensilestrength of rock (g/Kp) i
A' = pre-existing crack g = unconfined compressive strength Mohr-Coulomb
length in rock Kp = (1+sin ¢)/(1-sind) > material 1

¢ =frictionangle

Relationship between applied force on an indenter and the length of edge crack (\) beneath
the plastic crushed zone



F = Thrust
~ p = Penetration
S = Cutting Depth

WIRTH-HDRK Continuous Mining Machine (CMM)



R TP = e
e, Y =

Rock cuttings produced by CMM
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= Crack growthif K, >Kc [o>0oc]
Il 04 : .
= " Crack growth (after Germanovich and Dyskin, 2000)
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Supression of crack growth by small confining pressure
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“Harmonic Hole” — Optimum shape of hole to minimize the extent of excavation damage?



a8 Gmin Thermal properties Mechanical properties

= =0.6
% ~ Omax K = 3W/m°C ¢ =30°
al :12m Gmin :119 MPa Cp:84483‘]/kgoc qulePa 3
a.t=40x10° 1/°C p = 2650 kg/m

a2=20m G max =0.71 MPa
Wall temperature T=100°C

(fixed)
O max L ¢ ‘ ‘
100°
:: 00 s
G min O min
Contours of
temperature
(after 15 days
of heating)

Extent of failure
region (after 15 days)

“Harmonic Hole” —Effect of thermal load on excavation damage



“Harmonic hole’ - Kolar Gold Fied (Caw, 1956)
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(a) Empirical stand-up time relations for tunnels as a function of span and
rock quality defined by the Rock Mass Rating System; (b) Theoretical
stand-up time based on joint strength deterioration with time (after
Fakhimi 1992).
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Fracture mechanics models, @) single rock bridge under far field

normal and shear stresses; b) multiple rock bridge under far field
normal and shear stresses.
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From Kemeny, 2003
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Cohesion and safety factor as a function of time.



Linear contact law
Contact law

F Fn=KnpUp
AFg = Kg- AUg
Fn
Slip condition
FS = u Fn

Deformation is assumed to occur
at contact point only.

Un
Contact bond Parallel bond
Models adhesion over vanishingly Models additional material
small area of contact point (does not deposited after particlesarein
resists bending moment); breaks if contact (resists bending moment);
normal or shear force exceeds breaks if normal or shear stress
bond strength. exceeds bond strength.

Particulate mechanics (PFC -Cundall and Potyondy)

Constitutive behavior at contact
between two particles

Fn
(tension)
bond c
bresks o Fn
contact bond
Kn
1
<
Un
overl
dip model (overlap)
contact
Fs bond
Fs™" >/ =
K slip model
S whenUp>0
1
Us



Par allel-bonded stress corrosion model

e Stress-dependent corrosion reaction occurs at 21V

micro-tension sites.

Corrosion reaction occurs at the periphery of
paralel bonds and removes bond material

e Reaction rate is determined by local
driving force and local energy barrier.

1) Driving force: bond stress (sigma)
2) Energy barrier: micro-activation stress (sigma_a)

e Express corrosive-front velocity as:

v =0 if sigma<sigma a

PFC simulation of time dependent weakening of rock
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PFC model of a particulate assembly (rock) and compression loading

Compression test
on assembly of
particles

Cluster of particles




y = -24.386x + 23.491

2 _
" y = -20x + 20 R =0.8779
R°=1
12 - \
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Static Fatigure Curves used as input to the UDEC analysis of collapse over time a Yucca Mountain
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Collapse predicted around
drifts over 10,000 years at
Yucca Mountain assuming
Category 2 Tuff Static
Fatigue Curve.

Note: thermal and seismic
effects have not been
considered.
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Magnitude
of displacements
[meters]

0.0

0.25

>05

Collapse predicted around
drifts over 10,000 years at
Yucca Mountain assuming
Category 2 Lac du Bonnet
Static Fatigue Curve.
Note: thermal and seismic
effects have not been
considered.
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Dilation response of the joint
sample as measured during

the FFC sheaing experi ment

(no rd ativerotation of upper and
lower bl ocks a lowed)

Use of PFC to examine the shear behavior of arough joint.
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/

-1 MPa Cataclastic zone /‘
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Zone as determined from triaxial

J Normal stress acting on Fracture
overcore measurements
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URL shaft
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Observed variability of normal stress across a thrust fault at the URL, Pinawa,Canada.



Subsidence?
Collapsed o
I Monitoring rock i =
system 8
o3
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Stable room ] ]
arch Pillar degradation _
rate Time, t (years)

Prediction of long-term (50~100 yr) behaviour of Pillars and Large Excavations in abandoned mines



Log10 seismic

Time Lo0g10 seismic

Time moment
Mar 2 10:51 1992 moment
Feb 27 00:32
Feb 22 14:14 55 days 73
Feb 18 03:56
Feb 13 17:38 4.80
Feb 907:20
nrs ()
Jan 31 10:43 4.35
Jan 27 00:25 ( )3.00 3
Jan 22 14:07
Jan 18 03:49 ©3.45 0 hours O
Jan 1317:31 ©3.00 - 39

Breakout PFC analysis



Keyed highly compacted
clay-block bulkhead

Concrete
3.5m high by bulkhead key
4.4 mwide
elliptical tunnel

Keyed concrete
bulkhead

_ Pressure supply
Sand filler Highly compacted and withdrawal
backfill headers

Room425
Steel support

Transparent Earth. URL TSX AE (Courtesy of Professor Paul Young, University of Toronto)



Conclusions

* Remarkable and continuing computational and
observational advances.

* Predictive models should build from empirical rules;
rationalize and extend them.

e Advances will benefit all of rock mechanics.

 Waste isolation offers unprecedented opportunity to
“know” the rock mass —Professor Muller’s prime
concern.
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