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1 INTRODUCTION   

A large number of engineering problems deal with solving heat transfer and/or fluid-flow problems. Very 
often these problems are coupled with mechanical analysis of solids to capture the physics of the underlying 
processes. Each of these processes has a characteristic time which describes the typical time needed to 
transport energy (or information) over the characteristic length (Itasca 2019 a,b,c). For thermal and fluid 
diffusion processes, the characteristic time is often several magnitudes larger than the time for mechanical 
processes. In practical applications, however, the timestep in numerical solution of thermal and fluid prob-
lems tends to be very small. This is related to the fact that it is limited by the stability of numerical methods 
used for solving governing differential equations, which are discussed below. 

FLAC3D thermal and fluid logic adopt energy-balance and fluid mass-balance equations, respectively, for-
mulated at each node of model grid. The nodal form of these equations is (Itasca 2019 b,c): 

for thermal problems: 𝑑𝑑𝑇𝑇𝑛𝑛
𝑑𝑑𝑑𝑑

= − 1
∑𝑚𝑚𝑡𝑡ℎ

𝑛𝑛 𝑄𝑄𝑡𝑡ℎ𝑛𝑛  (1) 

for fluid-flow problems: 𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝑑𝑑

= − 1
∑𝑚𝑚𝑓𝑓𝑓𝑓

𝑛𝑛 𝑄𝑄𝑓𝑓𝑓𝑓𝑛𝑛  (2) 

where 𝑇𝑇𝑛𝑛 (and 𝑃𝑃𝑛𝑛) is temperature (pressure) at node n, t is time, 𝑚𝑚𝑡𝑡ℎ
𝑛𝑛  (and 𝑚𝑚𝑓𝑓𝑓𝑓

𝑛𝑛 ) is equivalent nodal thermal 
(fluid) mass and summation is taken over all zones contributing to node n, 𝑄𝑄𝑡𝑡ℎ𝑛𝑛  (and 𝑄𝑄𝑓𝑓𝑓𝑓𝑛𝑛 ) is equivalent out-
of-balance heat (discharge). 

Equations 1 and 2 are very similar and therefore thermal and fluid logic share the same solution techniques, 
which include explicit and implicit numerical schemes1. Based on this, only discussion pertinent to thermal 
analysis is provided below. However, all the results presented in this paper, including new solution methods, 
can be directly adopted to fluid-flow analysis. 

In the explicit formulation, the time derivative in Equations 1 and 2 is expressed using forward finite dif-
ference and out-of-balance quantities are evaluated at previous time t. Numerical stability of this scheme 
imposes limitations on the maximum timestep which cannot exceed the characteristic time of the smallest 
zone in the model. This timestep often tends to be extremely small (10-5 ÷ 10-1 seconds) making use of the 
explicit scheme impractical in many cases. 

Implicit formulation partially resolves this restriction by employing the numerically stable Crack-Nicolson 
method (Thomas 1995). In this formulation, the time derivatives in Equations 1 and 2 are expressed using 
central finite difference and out-of-balance quantities are evaluated by taking the average between previous 

 
1 In the fluid module, the implicit scheme only applies to fully saturated fluid-flow simulation. 
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and current time (Itasca 2019 b,c). By using the Crank-Nicolson method, differential Equation 1 (and sim-
ilarly Equation 2) is transformed into a system of linear equations: 

𝐴𝐴𝑛𝑛𝑛𝑛∆𝑇𝑇𝑗𝑗〈𝑡𝑡〉 = 𝑏𝑏𝑛𝑛〈𝑡𝑡〉  , (3) 

𝐴𝐴𝑛𝑛𝑛𝑛 = 𝛿𝛿𝑛𝑛𝑛𝑛 + 𝛾𝛾𝑛𝑛

2
𝐶𝐶𝑛𝑛𝑛𝑛 , 𝛾𝛾𝑛𝑛 = Δ𝑡𝑡

∑𝑚𝑚𝑡𝑡ℎ
𝑛𝑛    

Here, 𝐶𝐶𝑛𝑛𝑛𝑛 is the matrix of thermal coefficients (related to heat capacities) for nodes n and j, 𝛿𝛿𝑛𝑛𝑛𝑛 is Kronecker  
delta, ∆𝑇𝑇𝑗𝑗〈𝑡𝑡〉 is temperature change from time t to time 𝑡𝑡 + ∆𝑡𝑡 at node j, and 𝑏𝑏𝑛𝑛〈𝑡𝑡〉 is the RHS vector contain-
ing contributions from out-of-balance heat sources. 

In the current numerical implementation of the implicit approach, System 3 is formulated and solved locally 
for every node of the model using the Jacobi iterative method (Itasca 2019 b,c).  Although, the Crank-
Nicolson method is stable for any positive ∆𝑡𝑡, the convergence of the Jacobi method is guaranteed only if 
matrix 𝐴𝐴𝑛𝑛𝑛𝑛 is strictly diagonally dominant for each node. In practice, this condition sets a limit for maximum 
calculation timestep as the Jacobi method may diverge for large values of ∆𝑡𝑡. This often means that the 
implicit scheme allows the timestep to be only a few-to-hundreds times larger than the explicit scheme, 
which is not enough for an efficient calculation speed. 

New developments presented in this paper overcome the limitations of the Jacobi method and allow using 
large timesteps only limited by the ability to capture the physics of the processes. The basic idea is to replace 
the node-based Jacobi iterative solver with an efficient implicit global solver which solves system of equa-
tions (3) for the whole model at once at each timestep. 

2 FORMULATION OF THE GLOBAL PROBLEM 

Contrary to current implementation of the Jacobi method, which operates on local node-zone level, the new 
approach is based on forming global matrix M for the whole model to account for contribution of all nodes 
at once. Equation 3 can be rewritten in a way more suitable for forming global matrix 𝐌𝐌 = 𝑀𝑀𝑛𝑛𝑛𝑛: 

𝑀𝑀𝑛𝑛𝑛𝑛∆𝑇𝑇𝑗𝑗〈𝑡𝑡〉 = 2
𝛾𝛾𝑛𝑛
𝑏𝑏𝑛𝑛〈𝑡𝑡〉,        𝑀𝑀𝑛𝑛𝑛𝑛 = 2

𝛾𝛾𝑛𝑛
𝛿𝛿𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛     or      𝐌𝐌 = 2

𝛾𝛾𝑛𝑛
𝐈𝐈 + 𝐂𝐂 (4) 

where 1 ≤ 𝑛𝑛, 𝑗𝑗 ≤ 𝑘𝑘, k is the number of nodes (grid points) in the model, I is identity matrix, and 𝐂𝐂 = 𝐶𝐶𝑛𝑛𝑛𝑛. 

Global matrix C does not need to be calculated element-by-element in the new approach; the approach 
makes use of thermal coefficient matrices ℂ previously calculated for each zone of the model and used in 
the Jacobi method (matrix ℂ describes the contribution of thermal coefficients from node j to node n within 
a zone). 

A simple example below illustrates the idea of the approach. Consider three triangular 2D zones connected 
at the common point in the middle (Fig. 1a). For each zone, change in heat ∆𝑄𝑄 at each node can be expressed 
through node temperature change ∆𝑇𝑇 and local matrix of thermal coeffients ℂ as: 

∆𝑄𝑄𝑙𝑙 =  ℂ𝑙𝑙∆𝑻𝑻, 𝑙𝑙 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 (5) 
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Note that each matrix ℂ is symmetric. Summing up nodal heat contributions from each zone connected to 
a node, the following global system is obtained: 

∆𝑸𝑸 =  𝐂𝐂∆𝑻𝑻, (6) 
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where incremental heat and temperature without superscripts denote total nodal quantity. 
 

 
Figure 1. Simple geometries with no attach conditions (a) and with attaches (b). 

 
It can be seen from Equations 4 - 6 that matrices C and M are symmetric. For this simple case, M is a dense 
matrix; however, in real applications, M is very sparse as each node typically accounts for the contributions 
from the connected zones only. A more complex case of when a node is slaved to another node or a face 
via attach conditions or interfaces is described next. 

Consider the case presented in Figure 1b. Node 2 of zone a is attached (slaved) to face 4-5 of zone b with 
weights w24 and w25. Node 3 is attached (slaved) to node 6 with weight w36. Similarly to Equation 5, incre-
mental nodal heat in each zone can be expressed as 
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Due to the presence of attach conditions, temperature at nodes 2 and 3 and incremental heat at nodes 4,5,6 
are now inter-dependent. Using this fact and Equations 7, one can obtain: 

∆𝑇𝑇2 = 𝑤𝑤24∆𝑇𝑇4 + 𝑤𝑤25∆𝑇𝑇5  
∆𝑇𝑇3 = 𝑤𝑤36∆𝑇𝑇6 (8) 
∆𝑄𝑄4 = ∆𝑄𝑄4𝑏𝑏 + 𝑤𝑤24∆𝑄𝑄2𝑎𝑎 = ∆𝑄𝑄4𝑏𝑏 + 𝑤𝑤24[𝑐𝑐12𝑎𝑎 ∆𝑇𝑇1 + 𝑐𝑐22𝑎𝑎 (𝑤𝑤24∆𝑇𝑇4 + 𝑤𝑤25∆𝑇𝑇5) + 𝑐𝑐23𝑎𝑎 𝑤𝑤36∆𝑇𝑇6]  
∆𝑄𝑄5 = ∆𝑄𝑄5𝑏𝑏 + 𝑤𝑤25∆𝑄𝑄2𝑎𝑎 = ∆𝑄𝑄5𝑏𝑏 + 𝑤𝑤25[𝑐𝑐12𝑎𝑎 ∆𝑇𝑇1 + 𝑐𝑐22𝑎𝑎 (𝑤𝑤24∆𝑇𝑇4 + 𝑤𝑤25∆𝑇𝑇5) + 𝑐𝑐23𝑎𝑎 𝑤𝑤36∆𝑇𝑇6]  
∆𝑄𝑄6 = ∆𝑄𝑄6𝑏𝑏 + 𝑤𝑤36∆𝑄𝑄3𝑎𝑎 = ∆𝑄𝑄6𝑏𝑏 + 𝑤𝑤36[𝑐𝑐13𝑎𝑎 ∆𝑇𝑇1 + 𝑐𝑐23𝑎𝑎 (𝑤𝑤24∆𝑇𝑇4 + 𝑤𝑤25∆𝑇𝑇5) + 𝑐𝑐33𝑎𝑎 𝑤𝑤36∆𝑇𝑇6]  

Combining Equations 7 with 8, the following global matrix C is formed: 
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System of Equations 9 does not involve incremental temperature ∆𝑇𝑇2 and ∆𝑇𝑇3 as they are not independent 
quantities. After system (9) is solved, incremental heat and temperatures at nodes 2 and 3 can be found 
from Equations 7 and 8. As in the previous case with no attaches, matrix C in Equation 9 is dense, while it 
is typically very sparse for real engineering problems. If there is a chain of connections between nodes via 



attach or interface conditions, this chain must be resolved to use cumulative weights and to form the correct 
global matrix M. 

Note again that matrix M is symmetric, sparse and positive definite (to reflect the fact that it is equivalent 
to the heat conductivity matrix in the Fourier's law). In general, the matrix may become close to positive 
semi-definite as its’ smallest eigenvalue may be very small for large timesteps. 

3 NEW IMPLICIT SOLVERS 

The typical and most efficient approach to solving large sparse symmetric positive definite (SPD) systems 
is to use preconditioned conjugate gradient (CG) method (Ford 2014, Intel 2019). Direct approaches based, 
for example, on LU-, QR-, or Cholesky decomposition can be adopted for solving smaller sparse systems 
and they may be more efficient if the number of iterations in the CG method becomes too large or if the 
system is semi-definite or indefinite. Both of these approaches are implemented in the current work and 
they are based on numerical algorithms available in Intel ® Math Kernel Libraries (C-language interface). 
MKL routines are highly optimized and provide a relatively simple interface (Intel 2019). 

3.1 Conjugate gradient solver 
The conjugate gradient (CG) method adopted in the current work is based on the reverse communication 
interface (RCI), which implements a group of user-callable routines that are used in the step-by-step solving 
process (Intel 2019). Based on this logic, several MKL routines are called within a loop until the relative 
error of the solution falls below a specified limit or until the number of iterations exceeds the specified 
limit. 

Since the system’s extremal eigenvalues are calculated to verify whether the CG method can be used (if the 
system is positive definite), it is also easy to find the system’s condition number and evaluate the limit on 
the number of CG iterations required to reach the desired accuracy. Thus, the iteration limit can be auto-
matically adjusted depending on model parameters, and the solution of an SPD system can always be found 
up to the desired accuracy. Corresponding stopping criteria and error analysis are provided below. 

Let κ be the condition number of matrix M defined as the ratio of the largest to the smallest eigenvalues, 
𝜅𝜅 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚⁄ . Define relative precision of the solution as 

𝜀𝜀 =
�𝒙𝒙−𝒙𝒙[𝒏𝒏]�𝑀𝑀
�𝒙𝒙−𝒙𝒙[𝟎𝟎]�𝑀𝑀

 (10) 

where vector x is the true solution of the system, x[n] is the solution at the n-th iteration, x[0] is the initial 
guess, and ‖𝐯𝐯‖𝑀𝑀 = √𝐯𝐯𝑇𝑇𝐌𝐌𝐌𝐌 is M-matrix norm of vector v. A well-known result for CG convergence esti-
mate is (Saad 2003) 

𝜀𝜀 ≤ 1 𝑇𝑇𝑛𝑛 �
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚+𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚−𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

�� < 2exp (− 2𝑛𝑛 𝜅𝜅⁄ ) (11) 

where Tn is Chebyshev n-th degree polynomial and n is the number of iterations in the CG algorithm nec-
essary to reach relative precision 𝜀𝜀. Therefore, 

𝑛𝑛 ≤ 1
2
𝜅𝜅 log 2

𝜀𝜀
 (12) 

Provided that the condition number is found, Equation 12 serves as an estimate for the required number of 
iterations in the CG method and it is implemented in the code for 𝜀𝜀 = 10−6. The code also caps the maxi-
mum allowed number of iterations at 1000. Thus, if for any reason the CG algorithm does not converge to 
the specified precision within min(𝑛𝑛, 1000) iterations, it is considered that the solver failed to find the 
solution. 

Expression 12 provides an upper estimate for the number of iterations. However, the CG method may con-
verge to the specified accuracy in a smaller number of iterations. Therefore, more precise stopping criterion 
is implemented in the code and it is also based on Equation 10 for consistency. 



Relative error in Equation 10 cannot be directly evaluated as the exact solution is unknown. Taking the 
initial guess 𝒙𝒙[𝟎𝟎] = 0, it can be shown that 

𝜀𝜀[k] =
�𝒃𝒃−𝒃𝒃[𝐤𝐤]�𝑀𝑀−1

‖𝒃𝒃‖𝑀𝑀−1
 (13) 

where 𝒃𝒃 is known RHS in Equation 4 and 𝒃𝒃[𝐤𝐤] = 𝐌𝐌𝒙𝒙[𝐤𝐤] is RHS obtained at the k-th CG iteration. If relative  
error 𝜀𝜀[𝑘𝑘] ≤ 10−6, iterations stop. While vectors 𝒃𝒃 and 𝒃𝒃[𝒌𝒌] can be easily calculated, the inversion of the  
global matrix M is infeasible; instead, it is approximated with the inverse of the preconditioner matrix as 
discussed below. 

The current work adopts a simple diagonal (Jacobi) preconditioner to improve spectral characteristics of 
the global matrix and reduce the number of iterations in the CG algorithm. The choice of this preconditioner 
is natural as it can be cheaply calculated with MKL routines, it does not break symmetry (for central appli-
cation) or change the sparsity of the system, and it performs well for diagonally dominant systems. 

Since the preconditioner is chosen to approximate the original matrix M, the inverse of the matrix in Equa-
tion 13 can also be approximated through preconditioner P as 

𝐏𝐏 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌)   ⇒   𝑀𝑀𝑖𝑖𝑖𝑖
−1 ≈ 𝑃𝑃𝑖𝑖𝑖𝑖−1 = 𝛿𝛿𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖�  (14) 

This approximation is found to work well for error estimation in Equation 13. 

MKL routine “dcg” is used to get the solution vector using the CG method. 

3.2 Direct solver 
In addition to the preconditioned CG method, the MKL Direct Sparse Solver (DSS) is used in the current 
work. The user has a choice of selecting the CG or DSS algorithms for the implicit scheme. The advantage 
of the direct solver is that it is robust (can be used to verify results), it works for indefinite matrices, and 
may be faster in cases when the CG method requires a large number of iterations (≳ 500). This often 
happens when global matrix M is close to being positive semi-definite (the smallest eigenvalue tends to 
zero). Similarly to MKL CG interface, the DSS interface implements a group of user-callable routines that 
are used in the step-by-step solving process. The algorithm is based on LU, LLT or Cholesky (selected 
automatically) factorization. 

MKL routine “dss_solve_real” is used to get the solution vector using the DSS method. 

3.3 Calculation of eigenvalues 
Knowledge of the smallest and largest eigenvalues of global matrix M allows calculating its condition 
number and check which of the solvers may be more suitable for the problem. Conjugate gradient method 
is only suitable for positive definite systems for which 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 > 0. For some problems, the matrix may be 
close to positive semi-definite if 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  is small (e.g. 0 ≤ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 ≲ 10−5). If at the same time, the condition 
number is large (𝜅𝜅 ≳ 103), a large number of iterations may be required in the CG method. Therefore, use 
of the DSS method may be more practical even for large sparse matrices. If 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 0, the CG method may 
not converge and only the DSS solver should be used. Finally, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 < 0 suggests that the system is indef-
inite or negative definite and this is typically an indication of errors in assembling the global matrix. 

Minimum eigenvalue is calculated once for global matrix M after it is assembled to verify that selected 
solver is suitable for the system (if it is not, a warning is issued). After that, if the CG method is selected, 
minimum and maximum eigenvalues are calculated for the preconditioned global matrix to estimate the 
required number of iterations. If the found number of iterations is large (> 500) or exceeds maximum limit 
(> 1000), a warning or error is issued. 

Routine “mkl_sparse_d_ev” from the MKL extended eigen-solver interface is used to obtain the extremal 
eigenvalues. The routine provides a choice of two algorithms, and it was found that the Krylov-Schur 
method calculates the extremal eigenvalues significantly faster than another available method, and it is used 
in this work. 



4 IMPLEMENTATION 

Before using new implicit solvers, global matrix M must be assembled based on nodal (grid point) infor-
mation and local zone matrices. This process is heavily optimized and multithreaded to use all available 
CPU cores. Due to the symmetry of the global matrix, only the upper triangular part is assembled in row-
by-row fashion and stored in three array variation of compressed sparse row (CSR3) format (Intel 2019). 

The global matrix is assembled once only before cycling starts with a specified timestep. Quite often, how-
ever, there is a necessity to change the timestep after a certain number of cycles while keeping all other 
model parameters the same. In order to avoid re-assembling the whole global matrix, the time-independent 
part of M, matrix C, is stored in memory and time-dependent addition to the diagonal terms is calculated 
as needed and added to the diagonal when the timestep changes (see Eq. 4). 

On the other hand, if model physical or geometrical parameters change in time (e.g. moving boundaries, 
large strain), the whole global matrix must be re-assembled (which is also related to the use of CSR3 for-
mat). This may negate improvements in overall calculation speed when using new solvers. The existing 
Jacobi solver should be used for such problems, as well as for problems requiring a very small timestep (it 
may be overall faster for such case). 

In the current implementation, the user has to specify which implicit solver to use. The decision has to be 
made based on calculation speed and applicability, which depend on problem size, timestep, and if the 
model physical properties or geometry change in time. For large problems, it is recommended to cycle for 
a few hundred or thousand steps to estimate the calculation speed of selected solver for a given timestep 
and, if needed, analyze eigevalues / condition number, which are output in FLAC3D console. An automated 
process of selecting the most suitable solver is planned for future developments. 

If the user uses the Jacobi solver and it diverges at some cycle, and the problem permits using the CG solver, 
new functionality provides the capability to automatically switch to the CG solver and proceed calculations. 
Figure 2 provides a high level overview of all mentioned operations and functionalities. 

 
Figure 2. Schematic chart of high-level calling sequence in the implicit scheme. 



5 EXAMPLE APPLICATION 

The example presented in this section is based on the “Conduction in a Plane Sheet” problem from the  
FLAC3D Thermal Analysis manual (Itasca 2019c). For the detailed description, material properties, and 
boundary conditions used, refer to the manual. The only modification used in the current example is the 
geometry of the model: a wedge geometry (Fig. 3a) is created instead of a column of bricks using the 
command 
zone create wedge size 15 40 10 point 1 (0.1,0,0) point 2 (0,0,1) point 3 (0,-0.1,0) 

Constant temperature T = 100°C is applied at the bottom of the wedge while the top is kept at 0°C. After 
some time, equilibrium state is reached with constant heat flux and unchanging temperature distribution. 

The presence of very narrow zones at the tip of the wedge drives the explicit timestep to be very small. The 
results of a simulation of 15 seconds of heat conduction using the explicit and implicit methods with the 
Jacobi, preconditioned CG, and direct solvers are presented in Table 1. The implicit solvers are run to reach 
accuracy of solution of at least 5.0e-4. The results are compared between each other and with the analytical 
solution and show excellent agreement (Fig. 3b). 
 

 
Figure 3. Temperature distribution at 15sec and comparison of numerical (obtained with the preconditioned CG solver) 
and analytical solutions in vertical direction normalized to T = 100°C and t = 15sec. 
 

Table 1. Simulation results of 15sec of heat conduction. The runtime reported in the last row was obtained on a PC 
with Intel i7 5820 6-core processor and 32Gb RAM. 

Scheme / Solver Explicit Implicit / Ja-
cobi 

Implicit / 
precond. CG 

Implicit / di-
rect 

Timestep 1.28856e-5 1e-4 0.5 0.5 
Number of steps 1164094 150000 30 30 
Error2 2e-5 5e-4 9e-5 9e-5 
Relative speed-up (runtime) 1X  (11m02s) 2.1X  (5m13s) 441X  (1.5sec) 662X  (1sec) 

Note that the timestep used in the Jacobi solver is the largest stable timestep; increasing it further makes 
the solver diverge and calculations fail. The timestep used in the preconditioned CG and direct solvers can 
be increased further; however, it causes noticeable numerical oscillations in the results close to the bottom 
boundary (Fig. 4). These oscillations quickly decay as cycling proceeds –  this is a known side-effect of the 

 
2 Error is defined as Euclidean norm between normalized numerical and analytical solutions. 



Crank-Nicolson scheme (Østerby 2003). In the current application of the scheme, the oscillations appear as 
a result of the combination of a large timestep and a small number of iterations (cycles). 

 
Figure 4. Temperature history at z=0.05 depending on the timestep used in the preconditioned CG or direct solvers. 

When using the CG or direct solvers in the implicit scheme, it is recommended to monitor histories near 
the boundaries of the model or other discontinuities, especially if a large timestep is used in combination 
with a small number of cycles. The oscillations do not cause the solution to diverge but results may be 
inaccurate in the oscillatory region. In such cases, the timestep should be decreased or the number of cycles 
increased. 

6 CONCLUSIONS  

This work presents an efficient new approach of solving thermal and fluid problems in FLAC3D using an 
implicit scheme with two new solvers: preconditioned conjugate gradient and direct solvers. The new solv-
ers are robust and stable and can operate with large thermal/fluid timestep limited only by the characteristic 
time of the model (or, in certain cases, by the potential instabilities of the Crank-Nicolson method; see 
discussion above). The new solvers are capable of handling very large problems with millions of zones, 
attach and interface conditions, and various boundary conditions. However, the new solvers may be ineffi-
cient for problems involving changing geometry or physical properties (e.g. large strain or partial saturation 
problems) as the global matrix has to be re-assembled each time the model parameters change. The existing 
Jacobi solver should be used in such cases. 

Currently the solvers are implemented for thermal logic and tested on thermal problems involving heat 
conduction, thermo-mechanical coupling, constant and transient boundary conditions, heat sources/sinks, 
convective boundaries. Ongoing developments will allow using this new methodology for fluid problems 
and thermal-fluid coupling. 
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