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1 INTRODUCTION  

Previous research works (Simon & Bagi 2014, Beatini et al. 2018) pointed out that masonry shells with no-
tension joints can exhibit considerable resistance to hoop (i.e. horizontal) tension because of the frictional 
forces arising in the horizontal joints due to meridional (i.e. vertical) compression, and this phenomenon 
can give a considerable extra resistance to the structures. The aim of our study was to predict this hoop-
directional tension resistance in case of different bond patterns, and to check the validity of the theoretical 
predictions with the help of 3DEC (Itasca 2013) discrete element simulations. Simple running bond, Flem-
ish bond and herringbone patterns (Fig. 1, top row) were investigated in our study. 

The complete analysis of each bond pattern consisted of the following three steps: (1) based on the statics 
of a suitably chosen elementary cell, theoretical prediction was derived to the magnitude of the hoop tension 
resistance in terms of the magnitude of meridional compression and the contact friction coefficient; (2) the 
same elementary cell was simulated with 3DEC and the prediction is checked; (3) the results were validated 
using a large structural model, i.e. a cylindrical shell submitted to vertical compression and a gradually 
increasing outwards surface pressure on the internal surface of the cylinder which results in hoop tension. 
 

 
Figure 1. (a) running bond pattern, (b) Flemish bond pattern, (c) herringbone pattern. 
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2 THEORETICAL DERIVATIONS 

2.1 The running bond pattern 
Figure 1a presents that elementary cell of a wall with simple running bond pattern whose equilibrium anal-
ysis at the initiation of sliding failure serves as the basis for finding the relation between the horizontal 
average tension stress,σt , and the vertical average compression stress on the horizontal surface, σc. The τ 
shear stress on the horizontal surfaces cannot exceed the friction limit, i.e. µ ⋅ σc, where µ is the friction 
coefficient. The length of the bricks is b, their height is h, and their thickness perpendicular to the plane of 
the wall is t. 

The horizontal equilibrium equation of one of the two truncated blocks in the middle is H = 2 T; or equiv-
alently, 2σt ⋅h⋅t = 2 τ ⋅ (b/2)⋅t: 
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from which (taking into account that τ = µ ⋅ σc at failure) the following theoretical prediction is received 
for the hoop tension resistance:  
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2.2 The Flemish bond pattern 
Similar derivations can be done for the Flemish bond pattern (Figure 1b). Note that in case of a Flemish 
pattern, the thickness of the wall is twice as much as in case of a running bond pattern wall constructed of 
the same size of bricks, and the perpendicularly placed bricks of the Flemish wall (middle block in Figure 
1b) do not take part in carrying the crosswise tension. The result turns out to be similar:  
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2.3 The herringbone pattern 
In herringbone pattern the vertical bricks are endangered for tipping over and, corresponding to whether 
such a motion takes part in the failure or not, two kinds of failure modes can occur. For unrealistically low 
frictional resistance (i.e. µ ≤ 0,5) the vertical bricks do not rotate, and the failure is due to pure sliding: the 
contact shear stress resultant T reaches the friction limit on all surfaces. This failure mode is shown in 
Figure 1c, bottom left. (In this case the distance d of the normal resultants N is equal to what is needed to 
keep the moment balance of the vertical brick: d ⋅ N = 2h ⋅ T.) The hoop tension resistance turns out to be  
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For larger, i.e. more realistic friction coefficient (µ ≤ 0,5 and above) the limitation for hoop tension re-
sistance becomes affected by the moment balance of the vertical bricks (Fig. 1c, bottom right). From the 
moment equation of the vertical bricks, from the horizontal force balance of the truncated horizontal bricks, 
and from the moment balance of the whole elementary cell, the following hoop tension resistance is derived:  
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3 3DEC SIMULATIONS 

The discrete element simulations were done on two types of models: elementary cells of planar walls, and 
on cylindrical shells. In every test, a vertical compression load was first expressed on the structure (self-
weight was neglected). Then a gradually increasing horizontal tension was given, until further increase 



could not be resisted any more (i.e. the equilibrium could not be found for this state). The horizontal stresses 
were increased in 50 N/m2 steps, and the highest equilibrated tension stress magnitude was detected and 
considered the as crosswise tension resistance.  

The material parameters imitated a brick structure consisting of deformable elements with dry (frictional) 
contacts. According to the experimental calibration tests by Fódi (2011), the following material character-
istics were used. The data for the elements: density 1428 kg/m3, bulk modulus: 1.10⋅1010 N/m2, shear mod-
ulus 0.833⋅1010 N/m2. The characteristics of the joints: normal contact stiffness 1.0⋅1010 (N/m2)/m, shear 
contact stiffness 0.70⋅1010 (N/m2)/m, friction angle 38°.  

The bricks were of 0.25 m × 0,065 m × 0.125 m size: for the running and herringbone patterns the 0.125 m 
was the perpendicular dimension (so in the plane of the analysis the length-to-height ratio was 4:1); while 
in case of the Flemish pattern the perpendicular size was 0.25 m = 2 × 0.125 m. 
 

 
Figure 2. The structure considered in the convergence analysis. 
 

3.1 Convergence analysis 
3DEC considers the deformability of the discrete elements in such a way that the elements are subdivided 
into uniform-strain tetrahedral finite elements. In order to get realistic information on how the structures 
behave, first the necessary density of the applied uniform-strain tetrahedral mesh had to be determined. 
This was done with the help of the structure shown in Figure 2 having 0.25 m width, 8 × 0.065 m total 
height between the top and bottom loading plateau, and 0.25 m thickness perpendicular to the plane of 
Figure 2. This structure was loaded vertically by 4167 N/m2 compression, and then submitted to a gradually 
increasing horizontal tension. The simulation was repeated by using different densities for the tetrahedral 
subdivision inside the discrete elements.  

Table 1 shows that with increasing subdivision density, the failure tension stress converged to a specific 
value, which was approximated with about 2% accuracy by the rough meshing and with better than 1% 
accuracy by the medium meshing. We concluded that the medium meshing is sufficient for further analysis 
wherever the crosswise tension resistance is to be determined. 

Table 1. Convergence analysis on the necessary density of tetrahedral meshing. 

 Mesh size (m) Computation 
time (min) 

Limit tensile stress 
(N/m2) 

Deviation from     
“Very dense meshing” 

Rough meshing 0.03 8 5830 1,9 % 
Medium meshing 0.02 16 5760 0,7 % 
Dense meshing 0.01 171 5730 0,2 % 
Very dense meshing 0.005 2838 5720 --- 



3.2 Simulation results on the elementary cells 

The diagrams in Figure 3 summarize the results of the 3DEC simulations done on the elementary cells on 
which the theoretical predictions were derived. The horizontal axis shows the applied vertical compression 
stress; the vertical axis measures the crosswise tension resistance as a function of the vertical compression. 
The theoretical predictions are shown in solid lines and the simulation results are marked by the dots. The 
dependence is clearly linear, and the simulation results strongly coincide with the theoretical predictions. 

3.3 Validation of the results: Cylindrical shells 
The above theoretical predictions are being checked with the help of vertically standing cylindrical shells, 
submitted to vertical compression and then to increasing outwards loading that produces horizontal hoop 
tension. The presentation will introduce the results of these validation tests. 
 
 

 
Figure 3. Failure tension stress for the different bond patterns. 
 
 

4 CONCLUSIONS AND FUTURE RESEARCH 

The hoop tension resistance due to the friction in the horizontal joints for three different bond patterns were 
derived, and then checked with 3DEC simulations. In case of the herringbone pattern two different failure 
modes were identified, depending on the magnitude of the contact friction resistance: a purely sliding mode, 
and a combined tipping-over-and-sliding mode. 

The results for the crosswise tension resistance can be applied for the analysis of masonry shells (e.g. spher-
ical domes and fan vaults) where the traditional calculations assume zero hoop tension resistance. With 
formulas (2)-(5) the extra load bearing capacity of these shells can be quantified and taken into considera-
tion by the structural engineer. 
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