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1 INTRODUCTION 

PFC3D (Itasca 2018) is a DEM software suited for geotechnical problems useful to describe the discrete 
nature of the soil. PFC3D is commonly used in granular and rock-mechanics problems in which the rock 
behavior is simulated with an assembly of particles. Rarely PFC3D is used to model a continuous material 
like structural elements. In usual practice, structural parts are modeled in PFC3D with continuous rigid 
elements which can translate and rotate and are not able to deform or bend. In order to have a structural part 
with bending resistance is necessary to model it with discontinuous elements. This problem of modeling is 
particularly visible when rigid gabions are studied. Gabions are formed by welded steel grids hooked to 
each other to form a box. Grids have their own bending resistance and they need to be treated as a contin-
uous element. The steel box (Ledrosteel box 2019) is then filled with rock aggregates which are more suited 
for discrete modeling. The response of the steel can be simplified breaking the grids down into vertical 
columns and studying the behavior of a single steel wire column. In this paper the compression behavior of 
a grid steel wire is presented. The problem carries out the analysis presented in the Verification Problems 
of the PFC 6.0 interactive help menu. 

2 DESIGN AND ANALYSIS 

The steel wire studied had a length of 1 m and a diameter of 6 mm. It was placed in vertical direction and 
it was studied as a simply supported beam. In PFC3D a horizontal rigid plane was placed on the top of the 
column and then it was moved vertically downward to compress the wire once they got in contact. The load 
applied on the column was measured as ‘contact force’ between the moving wall and the top particle. The 
wire was modeled with a vertical row of 41 spherical particles of 25 mm of diameter in contact to each 
other (Fig. 1a). The first bottom particle was not allowed to move in the z- and y- direction and it formed a 
hinge. The last top particle was fixed in the y-direction while the particle was allowed to move in the vertical 
direction. The contact model assigned to the 40 contacts was the Linear Parallel Bond model because the 
bond carries both force and moment. The parallel bond normal and shear stiffness were calculated according 
to the verification problem ‘Tip-loaded cantilever beam’. The normal and shear strengths were set to high 
values equal to the ultimate tensile strength of the steel. The normal and shear stiffness of the balls were 
calculated using the overall column stiffness. The last parameter to set was the radius multiplier 𝜆̅𝜆, which 
determines the dimension of the radius of the bond (𝑅𝑅𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜆̅𝜆𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). In a row made with identical 
particles the parallel bond contacts can be seen as a cylinder defined by its radius and length, making a 
‘column’ between the particles. Thus, the parallel bond formed a cylindrical equivalent co-axial column to 
that made by the particles. The parallel bond contacts include axial bending and shear stiffness, so the bond 
area is an important parameter to set in order to have a rigid or flexible column. The radius multiplier was 
calibrated with the analytical bending solution of a simply supported column with a horizontal point load 
of 100 N acting in the middle section. The value of 𝜆̅𝜆 that ensured the same middle-section displacement 
between the numerical and analytical solution was 0.2337. The friction angle chosen for the analysis is the 
default value of 0.0. The parameters used for the contacts are reported in Table 1. 
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Figure 1. PFC3D model of a steel column a) with no initial flaw, b) with a parabolic shape, c) with a triangular shape, 
d) with a curvilinear shape. 
 

 

Table 1. Particles and linear parallel bonds properties of the steel column calibrated in bending. 

Parallel bond group Linear group 

Normal stiffness (N/m3) 𝑘𝑘�𝑛𝑛 8.24 × 1012 Normal stiffness (N/m) 𝑘𝑘𝑛𝑛 4.50 × 108 

Shear stiffness (N/m3) 𝑘𝑘�𝑠𝑠 3.23 × 1012 Shear stiffness (N/m) 𝑘𝑘𝑠𝑠 4.50 × 108 

Tensile strength (Pa) 𝜎𝜎�𝑐𝑐 5.53 × 108    

Cohesion (Pa) 𝑐𝑐̅ 5.53 × 108 Particle density (kg/m3) 𝜌𝜌 7850 

Friction angle 𝜙𝜙� 0.0    

Radius multiplier  𝜆̅𝜆 0.2337    
 

3 RESULTS AND DISCUSSION 

The calibrated column was tested in compression and in tension. The behavior in compression resulted 
different from that in tension. In tension the response was given only by the parallel bond group as the 
linear group of the contact model did not resist in tension. In compression, both the parallel bond and linear 
groups of the contact model were working, so the force applied to the column was divided by the two-
parallel series of springs that represent the linear parallel bond contacts. The global stiffness ratio between 
compression and tension loading was equal to 2 as the compression displacements resulted half of those 



calculated in tension. An equal behavior in compression and in tension was obtained reducing to negligible 
values the interparticle contact stiffnesses. However, the reduction had the effect to increase the computa-
tional time. In the compression analysis of a single column the computational time increased 5 times when 
the particles stiffness was reduced to zero (from approximately 2 to 10 minutes of CPU time). A global 
stiffness ratio of 1.2-1.3 can be chosen as a compromise between an equal compression-tension model 
response and not excessive computational time. Thus, a particle normal and shear stiffnesses reduction from 
4.50 × 108 𝑁𝑁/𝑚𝑚 to 1.00 × 108 𝑁𝑁/𝑚𝑚 was suggested to obtain a global stiffness ratio of 1.2. 

In addition, a steel compressed column undergoes to buckling when the critical Euler load is reached. The 
value of the critical load can be calculated from theory and it is equal to 131 N for a simply-supported 1 m 
long column (Young’s modulus E=210000 MPa, diameter Ø=6 mm, Fig. 2). Equation 1 reports the formula 
used to calculate the theoretical value of the critical Euler load.  

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸𝐸𝐸
𝑙𝑙02

 (1) 

where E is the Young’s modulus, I the moment of inertia and l0 is the effective column length, which is 
equal to the length of the column in the case of simply supported column. 

PFC3D was not able to identify the critical Euler load when a perfect vertical column was used, and it gave 
an infinite resistance both in compression and in tension. For that an initial geometrical flaw was inserted 
into the column to understand if PFC3D identifies a critical load and if the column loses stability. The 
longitudinal axis was assumed to have a parabolic shape with an initial horizontal displacement in the mid-
dle section equal to 1.5 cm (Fig. 1b). The model lost stability with a large increase of the displacements at 
approximately 100 N and then broke at the contacts. Around 100 N small increments of the applied load 
caused the development of large displacement, meaning that the column was not able to sustain more load. 
This is visible in Figure 2, near the critical load the slope of the curve decrease comparing to the beginning 
of the compression test. The critical load recorded was smaller than the critical Euler load and the reduction 
was caused by the initial flaw. To study the dependence between the critical load and the type of flaw 
inserted, other two deformed columns were studied (Figs 1c & 1d). The longitudinal axis of the second 
column studied had a triangular shape with a middle section displacement of 1.5 cm. The third column had 
a curvilinear shape with a tip displacement of 1.5 cm. All the three modeled columns showed a critical load 
smaller than 131 N and lost stability around 100 N. Similar responses to that of the parabolic-shaped column 
were recorded during the compression analysis. The behavior in compression was studied also with a static 
analysis in which small force increments were applied to the column’s tip and then PFC3D was run until 
the equilibrium was reached. In this manner the initial oscillations caused by the load application were 
reduced. The force-displacement graph obtained showed the loss of stability for buckling with the increase 
of displacements and agreed completely with the behavior obtained from the dynamic analysis (Fig. 2). The 
load reported in Figure 2 represents the vertical contact force measured on the horizontal wall and the 
displacements are the displacements of the horizontal wall. The static analysis was manually interrupted at 
the application of the 110 N load increment because the software could not reach the equilibrium. The 
displacement recorded during the application of the 110 N load increment was not reported in the graph. 
Static analysis had the advantage of decreasing the computational time.  

The response of the model to different loading rate was then studied to check if there was any dependence 
of the applied velocity on the column’s behavior. Applying a velocity of 0.01, 0.001 and 0.0005 m/s to the 
horizontal plane, the deformed column gave always the same behavior in terms of force-displacements (Fig. 
2). However, a high velocity caused large oscillations of the contact force. Small velocities are suggested 
for a quasi-static analysis, but they have the negative effect of raising the computational time. For the stud-
ied problem, a velocity of 0.001 m/s was considered a good compromise between the quality of the results 
and the computational time. However, a static analysis should be considered as a valid alternative to study 
compression of columns, in particular when these are combined with other materials that can be affected 
by the initial oscillations of the force. 
 



4 CONCLUSIONS 

The study shows the ability of PFC3D to simulate structural continuous steel elements. Compression be-
havior of a column can be modeled using a row of spherical particles with linear parallel bond contacts. 
However, there are some features that need to be considered in order to obtain a reliable model. The column 
response can be calibrated in bending, compression and tension. Then buckling behavior can be checked. 
While for bending and tension the column gives the same results as the analytical solution, in compression 
the analytical and numerical solutions are different. The difference is caused by the bond contacts and it 
can be solved finding a balance between interparticle contact stiffness reduction and raising of computa-
tional time. Moreover, PFC3D is not able to analyze the buckling behavior when a perfect column is studied 
in compression. Flaws need to be inserted in order to obtain instability for smaller loads than the critical 
Euler load. The buckling analysis performed by PFC3D is independent from the loading rate. High and 
small loading rates give the same compression response at large displacements, while high loading rates 
cause oscillations in the particles at the beginning of the simulation. Small velocities and large computa-
tional times are required to minimize the initial oscillations, making a static analysis more appropriate for 
compression simulations. 
 

 
Figure 2. Dynamic and static compression responses of a triangular-shaped column. 
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