

5th International Itasca Symposium

IMPACT ON BARRIERS: SINGLE ROCK FALL VS. ROCK MASS FALL

Alexander Preh

Mariella Illeditsch

Peter Pamminger

Mathias Schmidt

Vienna University of Technology, Institute of Geotechnics

Problem statement

The difficulty is defining the quantity of material that interacts with the barrier!

Figure 5. Assumed filling process for the calculation of dynamic and static loads on a barrier. Initial impact (a) imparts a dynamic load only followed by progressively larger static loads, (b) and (c), ending in overtopping where static and shear forces dominate.

(W. Ashwood, 2014)

Austrian Standard ONR 24801

Process and impact model according to ONR 24801

Forces
$$P_{dyn}$$
, $P_{stat} = E_a$, P_{ges}

Force [kN]

$$P_{st} = E_a = \frac{1}{2} \cdot K_a \cdot (\rho_M \cdot g \cdot h_{st}^2)$$

$$P_{dyn} = (\rho_M \cdot h_{dyn} \cdot v^2)$$

UDEC

Universal Distinct Element Code

PFC2D

Particle Flow Code in 2 Dimensions

Both codes are capable to model the movement and the interaction of stressed assemblies of particles.

Sliding block vs. Rock slide

PFC & UDEC: Free falling

In order to model the free falling of blocks, neither the acceleration nor the velocity is to be reduced during fall as a consequence of mechanical damping.

$$F_{(i)} + F_{(i)}^{d} = M_{(i)}A_{(i)}; \quad i = 1...6$$

$$F_{(i)}^{d} = -\alpha |F_{(i)}| sign(v_{(i)}) \quad i = 1...6$$

$$sign(y) = \begin{cases} +1 & wenn \ y > 0 \\ -1 & wenn \ y < 0 \\ 0 & wenn \ y = 0 \end{cases}$$

PFC: Viscous damping model

The reduction of the velocity caused by the impact is modelled with the help of a viscous damping model integrated in PFC.

$$D^{n} = c_{n} \cdot |V^{n}|$$

$$D^{s} = c_{s} \cdot |V^{s}|,$$

Critical Damping Ratio

$$c_{n} = \beta_{n} c_{n}^{crit}$$

$$c_{s} = \beta_{s} \cdot c_{s}^{crit}.$$

$$c_{n}^{crit} = 2mw_{n} = 2\sqrt{mk_{n}}$$
$$c_{s}^{crit} = 2mw_{s} = 2\sqrt{mk_{s}}$$

Calibration by Drop Test

Drop tests, rebound height

Calbration by Drop Test

Relation between restitution coefficient and critical damping ratio (Itasca 1999)

UDEC: Rayleigh damping

$$\beta = 0$$

$$\alpha = 0$$
total

$$C = \alpha M + \beta K$$

where α = the mass-proportional damping constant; and β = the stiffness-proportional damping constant.

UDEC Rayleigh damping (for a block volume of 1 m³):

- natural frequency f_{min}= 71.17 Hz
- fraction of critical damping ξ_{min} = 0.16

Analysis 1: Sliding block vs. Rock slide

The number of modeled blocks was varied between 1 and 30 and the joint spacing between the adjoining blocks was varied between 0 and 20 mm.

Movie 1: joint spacing 0.00 m

Movie 2: joint spacing 0.20 m

Maximum impact force vs number of blocks

PFC and UDEC show an increase in the maximum impact force as the number of blocks increases. From a number of blocks greater than or equal to five, the increase in impact force is insignificant.

Analysis 2: Rock fall vs. Rock mass fall

Version 1: const. number of 1000 Blocks,

Version 2: const. Volume of 1000 m³

The volume of the modeled equally sized blocks was varied between 0.1 and 10 m³.

Test arrangement

Free rotational velocity

runout distance of 50 m, block volume of 1 m³, 1000 blocks

Version 1: Block number was kept constant

Ratio of the maximum impact force generated by single rock fall and rock mass

 $p_{d,max} = a \cdot \rho_{wg} \cdot v^2$, dynamic coefficient a = 1.5...5

Version 2: Block volume was kept constant

Version 2: Block volume was kept constant

Ratio of the maximum impact force generated by single rock fall and rock mass

Conclusions

- The results of Analysis 1 indicate that the front part (i.e. the first five blocks) of a rock slide generates 90-98% of the maximum impact force.

 The effect of the following sliding blocks (beyond five) is negligible. An explanation could be that the first few blocks, after their impact, are acting as a barrier themselves, taking up most impact force of the following blocks.
- The results of Analysis 2 indicate that there is a relationship between single rock fall and rock mass fall, which predominantly depends on block volume and rotational damping.

Thank you for attention

