

Using machine learning, experimental observations, and numerical modeling to better understand the crushed zone in rock blasting

Jason Furtney, Derrick Blanksma, and Italo Onederra

Overview

Rock Blasting Numerical Model Data and Dimensional Analysis

Machine Learning

Rock Blasting

The physical processes occurring in rock blasting span six orders of magnitude in length-scale, time-scale and pressure.

The interactive-physical processes involved are time-dependent, non-linear, difficult to quantify experimentally and occur in a discontinuous, heterogeneous medium.

Blasting Sub-Problems: Non-ideal detonation, crushing, fracturing, vibrations, damage, burden movement, fly-rock, gas flow, and fumes

Crushed Zone

- ❖ Near the blasthole, the explosive induces compressive stresses that are well beyond the strength of the rock leading to the development of a crushed zone
- The presence of fines may influence positively or negatively the downstream mineral recovery
- Crushing consumes explosive energy that would otherwise do useful work fracturing and moving the rock

Fig. 1. Schematic illustration of processes occurring in the rock around a blasthole, showing formation of crushing zone, fracture zone and fragment formation zone [11].

Small-Scale Model

- Use the product equation of state and a non-ideal detonation model
- Rock properties: E, UCS, and rho

Quantify explosive rock interaction

How much of the energy of the explosive gets into vibrations?

Energy Partition

Crush Zone Index (CZI)

- 92 crushed zone measurements (Esen, et al., 2003)
- Dimensional analysis which relates explosive and rock properties to the crushed zone size.
- The ratio of original hole radius, r₀, to the radius of the crushed zone, r_c, is given as,

$$CZI = \frac{P_b^3}{K\sigma_c^2}$$

$$\frac{r_0}{r_c} = 1.231(CZI)^{-0.219}$$

 P_b Borehole pressure K Dynamic modulus σ_c Compressive strength

Fig. 4. Relationship between CZI and $r_{\rm o}/r_{\rm c}$ for 92 model scale test blasts.

Numerical Parameter Study

- 40,000 cases run with numerical model
- 4 different explosive types
 - ANFO, emulsion, doped emulsion and heavy ANFO
- Use Latin hypercube sampling to vary:
 - Young's Modulus
 - Density
 - UCS
 - Borehole Radius
- Cloud based job queue system for distributed computing of parameter study cases
 - Edge computing

Comparison of Data and Numerical Results

- Only "matching" in the crushing regime
- The CZI model does not have the details of the explosive
- There is some ambiguity about where the crushed zone is.
 - Taken as radius within which 90% of the plastic energy dissipation occurs
- Simple constitutive behavior no volumetric collapse

Decoupled Explosive

- Anulus of air between explosive and rock
- Explosive expands adiabatically to rock wall
- Pre-splitting and trim blasting
- Transition to the regime where no compressive failure occurs – direct fracturing

Data Limited Regime (Starfield and Cundall, 1988)

STARFIELD and CUNDALL:

In Earth resource engineering, we are slowly leaving the data limited regime via IoT, remote sensing, MWD, and cloud computing, but fundamentally we cannot see into the Earth.

Fig. 1. Holling's [1] classification of modelling problems.

Machine Learning and Surrogate Models

In traditional numerical analysis we explicitly solve known equations forward to make predictions

- Machine Learning is the art and science of making predictions without explicit programming. The data is the model.
- Domain knowledge is still required: feature engineering

Validated numerical models can be used to generate synthetic data which can be used to train machine learning models -- this is a surrogate model.

- Fast approximate answer, good for probabilistic analysis, training, numerical preconditioning, or any time a fast-approximate answer is needed.
- A new way to create easy-to-use empirical model.

Conclusions

- The crushed zone size is (mostly) independent of the hole diameter.
- Increasing the rock UCS or modulus decreases the crushed zone size and increases the equilibrium pressure.
- In general, emulsion type explosives do more work at higher pressures and result in lower equilibrium pressures. In contrast, ANFO explosives do less work at higher pressures and have higher equilibrium pressures.
- The crushed zone size alone is not the only relevant explosive-rock characterization. In most cases, the ANFO gives a larger crushed zone than an emulsion, but around 40% less energy is dissipated in plastic flow compared to an emulsion.
- Future work: use this surrogate model to inform a DEM contact model that can account for crushing. Long term: a fully discrete numerical model of blasting.

https://jkfurtney.github.io/ml_blasting/

The Influence of Explosive Type

Different explosives release different amounts of energy in the initial detonation vs later expansion

Understanding and quantifying the explosive-rock interaction is important for modeling any subsequent blasting phenomena

Data Analysis

