Verification of pile modelling technique in *FLAC3D*

Mahee A. Maheetharan & Alberto Jaen-Toribio Jacobs Engineering Group, London, UK

Scope

- Is the performance of the "FLAC3D pile element" dependent on the mesh configuration?
- What are the mesh configuration rules to achieve optimum performance?
- Benchmarking with:
 - results of the "FLAC3D liner element" and conventional pile analysis software;
 - results of conventional pile group analysis software.

Investigatory Single Pile Analysis

1200mm diameter single pile in elastic soil subject to lateral loading:

- **Model A:** Pile modelled with "FLAC3D liner element"
- **Model B:** Pile modelled with "FLAC3D pile element"

Both models adopting the same mesh and the same loading

Model A

Model B

Findings of Single Pile Analysis

- Lateral deflection of Model B significantly higher than that of Model A
- Conventional pile analysis software *PIGLET* gave matching results to Model A Issues with Model B?

Model B

Further investigatory analyses

Additional analyses carried out:

- with different grid size "block mesh"
- using "FLAC3D pile elements"
- pile located at various relative positions to the "block"

C Location of pile

- (1) Junction of 4 adjacent blocks
- (2) Edge between 2 adjacent blocks
- (3) Centre of a block

Findings of investigatory analysis

Finding ONE

Location of "pile element"

- at the edges or at a junction of a "block"produced different results depending on the direction of lateral loading

C Location of pile

- (1) Junction of 4 adjacent blocks
- (2) Edge between 2 adjacent blocks

Findings of investigatory analysis

Finding TWO

Sizing of the "Block" in relation to the pile diameter (1200mm)

- 1200mm square "Block" (in plan) mesh predicted lower deflections and bending moments compared to Model A results
- 600mm square "Block" (in plan) mesh predicted higher deflections and bending moments compared to Model A results
- 1000mm square "Block" (in plan) [section area of the "Block" matches cross-sectional area of the pile] showed good match in bending moments and deflections to Model A results.

Model C

C Location of pile

Further investigatory analysis

- Further analysis with zones surrounding the central 'block' discretized with 0.5m x 0.5m mesh (Model D)
- Elastic soil and Mohr-Coulomb soil cases considered

Model D

Cocation of pile

Summary of Single Pile Results

Model A

Model C

- Model A: Pile modelled with "FLAC3D liner element"
- Model C: Pile modelled with "FLAC3D pile element" at the centre of 1.0m x 1.0m 'block' surrounded by 1.0m x 1.0m mesh
- Model D: Pile modelled with "FLAC3D pile element" at the centre of 1.0m x 1.0m 'block' surrounded by 0.5m x 0.5m mesh

Summary of Single Pile Results

initiary of Shigher the Results

Model A

Model C

Model D

- Model A: Pile modelled with "FLAC3D liner element"
- Model C: Pile modelled with "FLAC3D pile element" at the centre of 1.0m x 1.0m 'block' surrounded by 1.0m x 1.0m mesh
- Model D: Pile modelled with "FLAC3D pile element" at the centre of 1.0m x 1.0m 'block' surrounded by 0.5m x 0.5m mesh

Single Pile Investigatory Analysis Conclusion

- Performance of modelling piles with "FLAC3D pile element" is dependent on mesh configuration.
- In "square-block" FLAC3D model, best performance could be achieved when modelling piles with "FLAC3D pile element" provided
 - the plan area of the "block" in which the pile is located matches with the actual cross-sectional area of the pile
 - the pile is located away from the "block" boundaries, preferably near the central region of the "block"
 - the "blocks" surrounding the "block with pile" could be formed using finer grid to improve accuracy

Verification with Pile Group Analysis

The **Rules** established for single pile modelling were extended to pile group subjected to lateral loading adopting Model D configuration with:

- Elastic Soil
- 66 piles modelled
- 60m x 15m with 2m thick concrete pile cap
- 4 rows of irregularly spaced piles
- Lateral load applied to pile cap 66,000 kN

Results of Pile Group Analysis

Shear load distribution at the pile head compared with the results of conventional pile group analysis program *REPUTE*.

Encouraging matching results demonstrate the validity of single pile modelling RULES.

Summary

"FLAC3D pile element" can be used successfully to model single pile and pile groups by appropriately configuring the FLAC3D mesh:

- **Rule 1:** adopt a square grid in plan with a single grid area equivalent to the physical cross-sectional area of the pile.
- Rule 2: locate the pile element near the central region (away from the grid boundaries) within the grid in which the pile is located.
- Rule 3: improved accuracy could be achieved by adopting a finer grid surrounding the zones in which the piles are located and thus to suit the overall modelling requirements.

Any Questions Please