NUMERICAL INVESTIGATION OF ROCK SUPPORT ARCHES

By

David Saiang, Luleå University of Technology
Anders Nyström, Boliden Mines AB
PROBLEM STATEMENT

- Cut-and-fill and/or drift-and-fill is the most expensive of the underground mining methods.

- Boliden (Swedish mining company) uses a variant of the C&F mining method called “Rill Mining” (a method with Austrian roots) to mine much of the VMS style polymetallic deposits in Sweden in extremely poor ground conditions (weak host rock in high rock stress environment)
  - In this method the stope heights are typically limited to 10 to 15m

- Because of the ever increasing costs Boliden has been contemplating the idea of modifying the Rill Mining method to help reduce costs
  - One approach is to improve the ground support system to achieve higher stope heights and thus the idea of using timely installation of rock support arches.
RILL MINING
(A MODIFIED/HYBRID VERSION OF C&F AND AVOCA)

Typical slice dimensions
- width: 6-8m
- Length: 100m
- Height: 5-6m

Question: Can we get more slices in rill bench while maintaining stability?

(Hustrulid, 2001)
ROCK SUPPORT ARCHES

Concept of natural and artificial arches

Natural arch

Artificial pressure arch

Spacing of rock bolts – essential for artificial arch formation

\[ h = W \frac{\sqrt{2} - 1}{2} \approx 0.2W \]

\[ w = H \frac{\sqrt{2} - 1}{2} \approx 0.2H \]


Stillborg (1996)

Li (2006)

\[ \sigma_{\text{max}} = 0.9 \times \sigma_c \times \left( \frac{e}{B} \right)^2 \]  
(Krauland N., 1983 & Sihna R.S., 1989)
INVESTIGATION OF ROCK SUPPORT ARCHES

- Numerical Modelling
  - To guide field investigation
    - spacing of rock support arches
    - Trial stope dimension (width, length and height)
  - To validate results from field investigation
    - spacing of rock support arches
    - Trial stope dimension (width, length and height)

- Field Investigation at Boliden’s Garpenberg Mine
  - Period of investigation: 2017 and on-going
  - Benching completed in September 2019
  - Rill bench tested – 20 m

- Implementation and design
Routine support installation
- 2.7 m rock bolts
- 1 m x 1 m spacing
- 5 cm thick shotcrete

Rock support arch scheme
- 0.75 m in plane
- 6 or 3 m out of plane
- 10 cm shotcrete
A high precision (laser guided) bolting rig is used in rock bolt installation.
ROCK SUPPORT ARCHE INSTALLATION
ROCK SUPPORT ARCHE INSTALLATION

- Regular support
- With arches
- Bolt arches (6m or 3m intervals)
- Monitoring drift
- Upper drift
- Rill benches
**TRIAL SCHEME**

- **Test area**
  - 882m Depth
  - 25 m rill stope height
  - Different support patterns (3 m and 6 m spaced arches)

- **Instrumentation**
  - Extensometers in roof and walls
  - Instrumented rock bolts
  - Total station survey + prism survey
  - Borehole camera survey
TRIAL IMPLEMENTATION

Quartzite
(Footwall)

Dolomite
(Hangingwall)

Shotcrete-rockbolt arches
Rockbolt arches

6 m arches
3 m arches
FLAC3D MODEL SETUP

Orebody thickness = 8m
Drift height = 5m
Drift width = 8m
Bench height = 10m, 15m, 20m
Shotcrete shell added

Shotcrete–rockbolt support systems

“excavate relax” sequence is used to eliminate “shock loads” on the support system

A new layer of shotcrete can added to create shotcrete-rockbolt arch
MODELLING APPROACH

- The first stage of the modeling was done using 3DEC. It became clear it wasn’t efficient. So FLAC3D was the next best option.
- The first stage of modeling was done utilizing the Mohr-Coulomb (MC) constitutive model. The results were not consistent with field observations.
- Hence, the Strain Softening (SS) constitutive model was utilized. The results became consistent with field observations.
- The initial MC models were used as a guide for choosing the strain for reducing the material properties.

Code:
- 3DEC
- FLAC3D

Constitutive Model
- Mohr-Coulomb
- Mohr-Coulomb-Strain-Softening
RESULTS FROM TESTING CONSTITUTIVE MODEL

Boliden’s engineers confirm that the strain-softening model gives stress observation results that conform to experience.

(Saiang, 2019)
Drift developed in a 15m rill stope height is within the area of stress influence from the development of the bottom drive.

Drift developed in a 20m rill stope height is on the edge of the area of stress influence from the development of the bottom drive.

Drift developed in a 25m rill stope height is outside the area of stress influence from the development of the bottom drive.
FLAC3D MODELLING RESULTS

Vertical displacement in the roof (P1) in the line of Arch #1

- Displacements during bottom drift development
- Displacements during top drift development
- Displacements during rill bench stoping

Measurement points – arch#1
FLAC3D MODELLING RESULTS

Horizontal displacement in the hangingwall (P2) in the line of Arch #1

- 6m arch spacing
- no arch
- 3m arch spacing

Displacements during bottom drift development
Displacements during top drift development
Displacements during rill bench stoping

Measurement points – arch#1

Time step
0  20000  40000  60000  80000  100000

Displacement (mm)
FLAC3D MODELLING RESULTS

Horizontal displacement in the footwall (P3) in the line of Arch #1

Displacements during bottom drift development

Displacements during top drift development

Displacements during rill bench stoping

Time step

0 20000 40000 60000 80000 100000

Displacement (mm)

Measurement points – arch #1

Advance direction

6m arch spacing
no arch
3m arch spacing
**FLAC3D MODELLING RESULTS**

- Shotcrete arch deformed less than routine shotcrete shell – arch #1
- The rockbolts forming the arch less loaded than routine rock bolts – arch #1
SUPPORT BEHAVIOUR – BOTTOM DRIFT

No Arches

6m spaced Arches

3m spaced Arches

15m Rill  20m Rill  25m Rill  30m Rill

FLAC3D 6.00
©2019 Itasca Consulting Group, Inc.

Cable State of Element
Clip Box:
- No Failure
- Tensile: Now
- Tensile: Past
MONITORING – CALIBRATION

- Prisms & extensometers
- 3 Profiles selected
- Close to the entrance
RESULTS FROM PRISM MONITORING

Accumulated movement in Z direction

Movement (mm)

- HB1P1
- HB1P2
RESULTS FROM MONITORING

Extensometers HB4
RESULTS FROM MONITORING

Laser scanning with Leica M60
WHAT WE HAVE LEARNT SO FAR

- Ground support (routine rock bolts and shotcrete, rock bolt arches and shotcrete - rock bolt arches) show noticeable ground displacement. The displacement magnitudes are reduced when the arches are introduced. The 3 m arches slightly reduce the displacement but not very significant compared to 6 m arch.

- The arches are seen to be active during the development of the top drive and later rill benching. This is actually the intention for the use of the arch. The modelling demonstrates it works!

- After the excavation of the bottom drift the displacements about 10 to 15mm, which conforms to the readings from the prisms.

- The displacements increase to 40 to 70mm when the top drift is excavated. This is to be validated with the monitoring data.

- The interaction between the bottom and top drift depends on the rill bench height.
CONCLUSIONS

- Positive Impact of the Arch installations
  - Larger Impact at Larger rill heights
  - Larger impact on the Footwall

- Limited improvement between the two Arch spacing
  - Insignificant for the lower rill heights
  - Measurable for higher rill heights

- Possible to increase rill height
  - 15m → 20m