A numerical study of a pin foundation on hard, rocky seabed A PFC3D application

Presenter: Emilio NICOLINI, CATHIE

Fabian DEDECKER, ITASCA Consultants, S.A.S; Raphaël COQUET, HydroQuest

Expertise, Seabed and Below.

Summary of the presentation

- ✓ description of the structure;
- ✓ some insight into the foundation structure;
- ✓ the connection between foundation and the rocky seabed: the pin;
- ✓ general behaviour of the pin foundation;
- ✓ numerical modelling:
 - ✓ determination of PFC3D rock mass parameters from engineering rock mass parameters;
 - ✓ numerical analyses;
 - √ discussion of obtained results;
- ✓ conclusions and lessons learnt.

The tidal turbine - photos

... some element of the global foundation problem.....

- ✓ tidal energy requires a steady current at the seabed;
- ✓ thus, rock is normally present at seabed;
- ✓ rock at seabed and steady currents, frequently associated with tides of several meters have some consequences:
 - ✓ drilling difficult, so cost of boreholes very high;
 - ✓ risk of borehole failure high in any case;
- ✓ for the same reason, drilled and grouted piles or tendons cannot be done (add production in series.....);
- ✓ in conclusion: very limited information about the seabed ground:
 - ✓ probably hard rock, from geology;
 - ✓ fractured, from camera inspection of the seabed.

The tidal machine foundation structure and the pin

- ✓ composed by tubular steel members;
- ✓ overall triangular shape, with the turbine connector at the centre;
- ✓ structure touches the seabed at the 3 corners;
- ✓ the contact is made by a "pin";
- ✓ advantage is that the contact is statically determined.
- ✓ the pin is a steel pointed base;
- ✓ each pin can host a ballast weight.

The foundation structure

How can we deal with such ground?

- ✓ to resist to currents, the foundation is required to provide a significant holding capacity (HC), i.e. a large resistance to horizontal loads, say H_{res};
- ✓ as drilling is not possible, the only solution is FRICTION;
- ✓ so, the H_{res} shall come from a mechanism like:

$$H_{res} = W\mu + C$$

- ✓ where:
 - ✓ W is the global weight on the foundation structure;
 - \checkmark μ is a global friction factor;
 - ✓ C is a "cohesive" component of the HC;

The global resistance of pin foundation – basic elements

• the foundation "resistance" depends on the simultaneous action of several forces, usually separated in vertical (V), horizontal (H) and overturning (M);

• failure happens when the VHM forces are in some (complex) relationship;

• if M=0 is assumed (centered load), a 2D envelope is obtained

The global resistance of pin foundation – basic elements

✓ for fixed ground parameters, the failure domain depends on foundation geometry, embedment;

✓ if failure is reached, equilibrium can still be found if the foundation geometry can change and

"inflate" the failure domain;

✓ this can happen for example by increasing embedment:

✓ i.e. resistance increases at "cost" of further embedment

Pin behaviour under horizontal loading - Conceptual model

- ✓ at lay-down, pure vertical load → very limited penetration;
- ✓ with horizontal load → failure and penetration;
- ✓ this will also produce fracturation of the rock mass decrease of resistance;
- ✓ decrease of resistance compensated by further penetration.
- ✓ How to compute this?

Finite Element Analyses – phase one

- ✓ "whished in place analyses";
- Mohr Coulomb failure: not able to model progressive crushing of the rock;
- ✓ shape and properties of crushed zone are imposed;
- ✓ geometry and penetration fixed at the beginning of the analysis.

PFC3D modelling of the rock mass and pin

- ✓ The PFC3D code was selected as it is able to:
 - ✓ model the rock mass joint families (3 in the figure);
 - ✓ model the crushing of the rock;
 - ✓ take into account of the actual displacement of the pin;
- we wanted a sophisticated numerical model, but built from sound rock mass model:
 - ✓ rock mass parameters determined to have the mechanical properties defined by Hoek&Brown, based on UCS and GSI;
 - ✓ calibration done for "intact" then fractured rock

Rock mass model

- ✓ micro-structure of the bonded material is a simplification of the true rock mass structure;
- ✓ so, micro-properties are chosen via a calibration process to match what
 is deemed to be relevant macro-behaviour;
- ✓ the bonded material micro-properties were chosen by attempting to match:
 - ✓ the Young's modulus and Poisson's ratio;
 - ✓ the UCS (Unconfined Compressive Strength);
 - ✓ the tensile strength.
- ✓ two phases:
 - ✓ intact rock;
 - ✓ fractured rock mass, with joints:
 - √ continuous
 - ✓ assumed to be closed and infinite at the model scale
 - ✓ 3 families, 90° to each other; variability of +/-10°
 - √ 1 family horizontal, 2 vertical; variability of +/-10°
 - ✓ spacing 0.5m for all families; variability +/-10%

The geometry of joints was also modified to match the required global rock mass properties.

Rock mass model – adding joint families

- the smooth-joint contact model simulates the behavior of a planar interface with dilation regardless of the local particle contact orientations along the interface.
- the behavior of a frictional or bonded joint can be modeled by assigning smooth-joint contact models to all contacts between particles that lie on opposite sides of the joint;
- the model required as well to slightly adapt the joints to obtain the global wished rock mass properties.

Contact model applied at each contact

Rock mass model, with pin installed and loaded

- ✓ initial analyses of the pin revealed not accurate all model recalibrated by assigning micro-parameters with a random distribution; particle radius variable as well;
- ✓ analyses run at constant vertical load, with imposed velocity to
 explore the full range of the development of the holding capacity;

Obtained results

- ✓ vertical force nearly constant during penetration;
- ✓ horizontal force: real resistance at the peaks:
 - ✓ resistance is mobilized, but imposed displacement brings it over failure; failure and remobilization phases observed;
 - ✓ broken rock is pushed away → less resistance → sinkage →
 displacement;
- ✓ once crushed rock is displaced, new resistance is found;
- ✓ model feature: resistance is different in X and Y!!! anisotropy!!

transition post-failure

Conclusions

- ✓ the rock mass model calibration was complex to set-up, but results were good;
- ✓ implementation of the joints added complexity, but as well, results were good;
- ✓ the behaviour of the pin during horizontal loading under controlled velocity was not as expected, but appears realistic and reliable;
- ✓ test was done immediately before peak (new run), by force controlled and stability was verified;
- ✓ interpretation required some attention, also seen the novelty of the structure-ground interaction.
- ✓ further developments:
 - ✓ effect of cyclic loading, in case horizontal load decreases, then goes up again:
 - ✓ progressive increase of damaged rock?
 - ✓ increase of sinkage of the pin?
 - ✓ effect of geometry of the pin: what happens once the base of the cylinder touches
 the seabed?

CATHIE

Any questions?

Expertise, Seabed and Below.