

Effect of Particle Shape on Shearing Behavior of Soil

Zeng-Le Ren

Supervisor: Yi Pik Helen Cheng

19 Feb 2020

OUTLINE

1. Background

2. Sample Preparation

3. Results and Discussion

4. Conclusions

☐ Background – Wide Applications

pharmaceutical processing biomedical science civil engineering

• • • • •

☐ Background - Particle Shape Characterization

SEM: scanning electron microscopy µCT: micro-computed tomography

Comparison chart for roundness by Krumbein (1941)

Very angular R = 0.12 - 0.17

Angular 0.17 - 0.25

Subangular 0.25 - 0.35

Subrounded 0.35 - 0.49

Rounded 0.49 - 0.70

Well rounded 0.70 - 1.00

Cho after Krumbein and Sloss (2006)

Krumbein, W. C. (1941). Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Research, 11(2), 64-72.

Powers, M. C. (1953). A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), 117-119.

Krumbein, W. C., & Sloss, L. L. (1951). Stratigraphy and sedimentation (Vol. 71, No. 5, p. 401). LWW. Cho, G. C., Dodds, J., & Santamarina, J. C. (2006). Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. Journal of geotechnical and geoenvironmental engineering, 132(5), 591-602.

☐ Background - Shape Descriptors in This Study

Particle shape characterisation at different quantities (Barrett, 1980; Mitchell and Soga, 2005; Zheng & Hryciw, 2015)

Minimum bounding box (MBB) method

(Blott & Pye, 2008)

- \circ Elongation index (EI) = I/L
- \circ Flatness index (FI) = S/I
- L: the longest,
- *I*: intermediate,
- *S*: the shortest edge
- oAdvantages of MBB method
- Easily achieved
- Reduce measurement errors

Barrett, P. J. (1980). The shape of rock particles: a critical review. *Sedimentology*, 27(3), 291–303. Mitchell, J. K., & Soga, K. (2005). *Fundamentals of soil behavior* (Vol. 3). New York: John Wiley & Sons.

☐ Background - Shape Descriptors in This Study

oRoundness (R) is independent of form, and relates to the relative rounding or angularity (sharpness) of corners and edges.

$$\circ \mathbf{R} = \frac{\sum (r_{i}/N)}{r_{\text{max}}}$$

Cho & Santamarina (2006)

Convexity: C= A/(A+B)

○ Cx (Convexity index) = VP/VCH

VP: the volume of the particle (A)

V*CH*: the volume of the convex hull enclosing the sample (A+B)

Mora & Kwan (2000); Yang & Luo (2015)

Elongation Effect

$$(FI = 1, R = 1)$$
$$(\underline{Cx} \approx 0.98)$$

$$\mathbf{EI} = I/L$$

$$\mathbf{FI} = S/I$$

Flatness Effect (EI = 0.6, R = 1) $(Cx \approx 0.75)$

EI = 1.0

AUCI

Convexity Effect

$$(EI = \frac{0.25}{0.25}, R = 1)$$

 $(FI = 1)$

Cx = 0.85

$$(EI = 0.5, R = 1)$$

 $(FI = 1)$

Roundness Effect

$$(EI = 1, FI = 1)$$

 $(\underline{Cx} \approx 0.75)$

☐ Sample Preparation

- Shear box60(L) X 60 (W) x 40 (H) (mm)
- Fujian Standard Sandscaled up by a factor of 7
- Input parametersemod = 4e7kratio= 1.2

- \circ n= porosity
- o f1: Particle friction μ from 0 - 4.5 kPa loading.
- f2: 4.5 kPa to 5 kPa& then 30kPa and shearing.

- Medium dense
 n=0.15, f1=0.2, f2=0.2
- Dense sample (e-max)
 n=0.15, f1=0, f2=0.2

☐ Sample Preparation

- o Peak friction angle
- Critical friction angle

 dv/ds ratio is the gradient of volumetric strain increment and shear strain increment.

- Maximum dilatancy rate
- Y-axis: stress ratio

X-axis: dv/ds

☐ Results – Elongation Effect

☐ Results – Flatness Effect

☐ Results – Convexity Effect

☐ Results – Roundness Effect

PackingAbility

Uniformly graded silica

Altuhafi, F. N., Coop, M. R., & Georgiannou, V. N. (2016). Effect of particle shape on the mechanical behavior of natural sands. *Journal of Geotechnical and Geoenvironmental Engineering*.

Zhujiang River sand, Leighton Buzzard sand, Quarts sand

mechanical behaviour of sands. Géotechnique Letters, 9(4), 299-304.

Yang, H., Zhou, B., & Wang, J. (2019). Exploring the effect of 3D grain shape on the packing and

2D DEM Simulation

Nouguier-Lehon, C. (2010). Effect of the grain elongation on the behaviour of granular materials in biaxial compression. *Comptes Rendus Mécanique*, 338(10-11), 587-595.

Natural sands

Cho, G. C., Dodds, J., & Santamarina, J. C. (2006). Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. *Journal of geotechnical and geoenvironmental engineering*, 132(5), 591-602.

 \times EI = 0.5 - Critical angle

0.6

Convexity (Cx)

0.8

 \blacksquare EI = 0.5 - Peak angle

0.4

10

0

0.2

Uniformly graded silica

Altuhafi, F. N., Coop, M. R., & Georgiannou, V. N. (2016). Effect of particle shape on the mechanical behavior of natural sands. *Journal of Geotechnical and Geoenvironmental Engineering*.

Zhujiang River sand, Leighton Buzzard sand, Quarts sand

Yang, H., Zhou, B., & Wang, J. (2019). Exploring the effect of 3D grain shape on the packing and mechanical behaviour of sands. *Géotechnique Letters*, 9(4), 299-304.

Natural sands

Cho, G. C., Dodds, J., & Santamarina, J. C. (2006). Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. *Journal of geotechnical and geoenvironmental* engineering, 132(5), 591-602.

UNIQUE

CONTRIBU TION

- A systematic study on particle shape
- o Investigate a specific shape factor effect on shear behavior
- o Separate the relative contributions of EI, FI, Cx and Roundness
- o Prepare sample via 3D DEM (PFC3D version 5.0)

☐ Conclusions

- Friction angle for roundness shows an opposite trend compared with published results. This imply that there is a packing effect that influences dilation and friction angle.
- \circ The elongation index has an interesting packing effect. Too elongated and too short particles (pure spherical particles) create a particularly loose sample, and the best packing appears at when EI = 0.75.
- The flatness index doesn't change initial packing too much, but it has a big impact to critical friction angle.
- The packing ability, maximum dilatancy rate and friction angle follow a decreasing trend with an increase of convexity.

ACKNOWLEDGE

Dr Yi Pik Helen Cheng(Principal Supervisor)

Dr Pedro Miguel Vaz Ferreira(Subsidiary Supervisor)

Professor Matthew Richard Coop

Dr Beatrice Baudet

Dr Xiaomin Xu

