Support assessment and 3D stress analysis of large underground excavations: A case study using 3DEC

Rabi Bhusan, Sripad R Naik and B H Vijay Sekar

Presented by

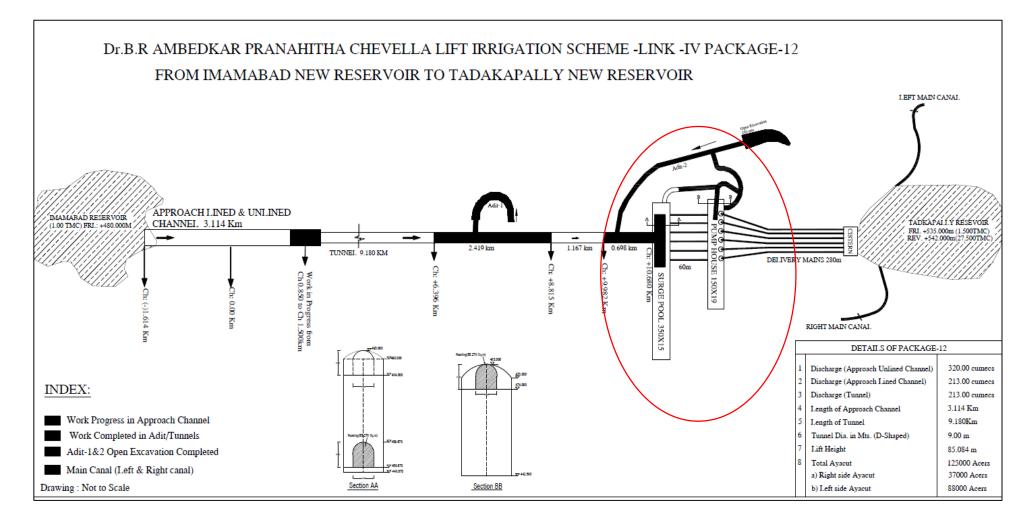
Dr. Rabi Bhusan, Scientist

National Institute of Rock Mechanics, Bangalore, India

5th International Itasca Symposium February 17-20, 2020 Vienna, Austria

INTRODUCTION

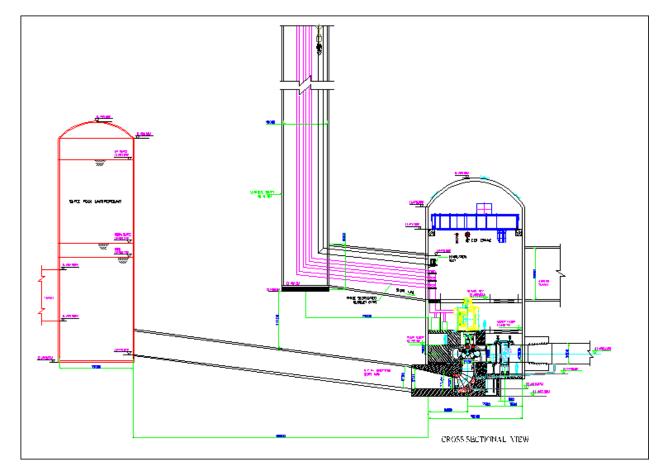
Objectives

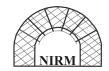

- The design of support system and analysis of stress regime distribution during stage wise excavation of the two large parallel caverns and associated components.
- The global stability of the excavations was evaluated by using Three-Dimensional Distinct Element Code (3DEC) (Itasca 2013).

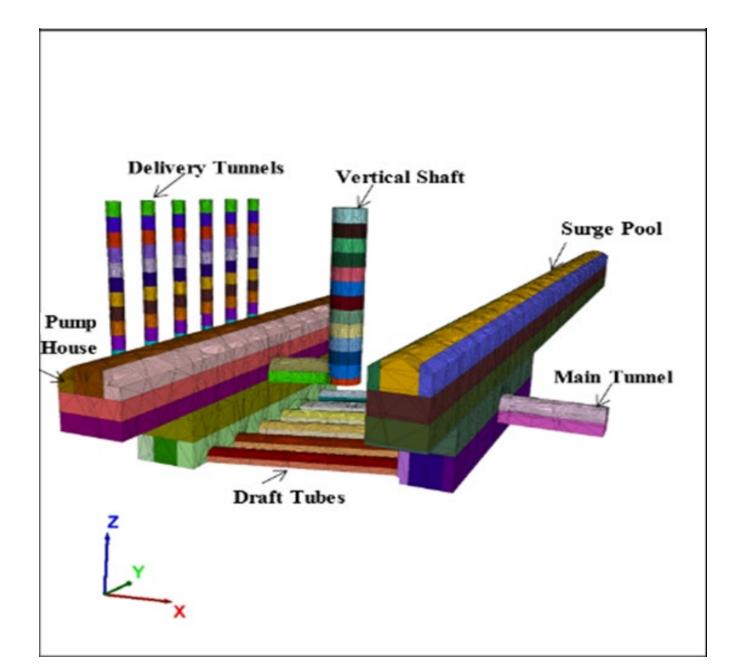
- □ Geological data like Q-values, joint set data, rock contact details have been collected from the excavated central gullet of both the caverns. Weathered granite is observed in boreholes up to a depth of 24 m from surface
- □ Initially support was assessed based on guidelines given by Grimstad and Barton (1993)

□ Core samples collected from the exploratory drill hole from the pump house and surge pool area are tested for physico-mechanical properties

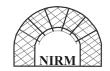
SCHEMATIC DIAGRAM




Surge pool connected to main tunnel of length 9.18 km, vertical shaft having a diameter of 10 m and 60 m depth, four draft tubes and delivery tubes having a diameter of 3.6 m


SECTION VIEW

- 1. Main tunnel (9m dia. D-shaped tunnel, 9.18 km long)
- 2. Surge pool 350m (L) x 15m (W) x 44.33m (H)
- 3. 4 No`s Draft tubes (60m (L) x 5.25m (W) x 3.7m (H) each)
- 4. Pump house 150 (L) x 19m (W) x 40.5m (H)
- 5. Vertical shaft i.e. cable shaft (10m dia., 64m depth)
- 6. 4 No's Delivery tunnels (15m (Horizontal Length) x 3.6m dia. each)



DESIGN AND ANALYSIS

The surface ground level elevation of the study area is 526 m, the crown of the pump house is 483 m and the bottom level is 442.5 m. The crown level of the surge pool is 493 m and the bottom level is evel is 448.67 m

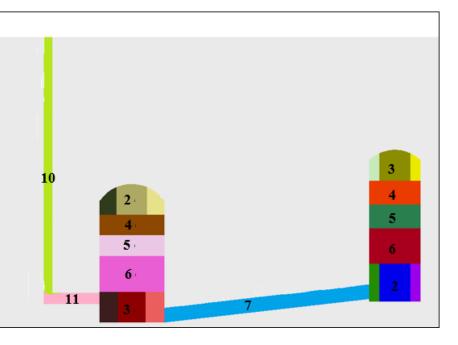
Excavation of bench height varies from 6 to 11 m

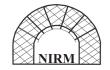
DESIGN AND ANALYSIS

- □ Based on the central gullet geological mapping data of the pump house and surge pool, it was observed that the granitic rock mass is highly jointed and contains four predominant joint sets (J), dip (D)/ dip direction (DD) J1=80°/340°, J2=70°/154°, J3=80°/080°, J4 82°/264° and horizontal joint sets spacing varying from 6 to 60 cm.
- □ Classification of rock mass was carried out using Tunneling Quality Index (Q) Barton et al (1974) and the values range from 11.81 to 55.21
- □ From drill hole logs indicated highly disintegrated rock mass up to 2.5 m depth, and from 2.5 m to 24 m consisted of weathered granite followed by fresh granite
- □ The depth of overburden considered is 30 m for estimating the properties.
- □ A blasting zone thickness of 3 m is considered all around the excavations of the pump house and surge pool cavern. A disturbance factor of 0.8 was considered for arriving at the blast zone material properties.

□ 100 mm thick Steel Fibre-Reinforced Shotcrete (SFRS) is modelled as liner elements.

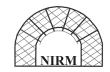
PROPERTY OF ROCK MASS BASED HOEK AND BROWN CRITERIA


The rock mass parameters considered for analysis are estimated based on Hoek et al. (2002) and Hoek & Diederiches (2006)


Hoek and Brown Classification – Input Parameters						
Property	For Fresh Granite		For Weathered Granite	Unit		
Uniaxial Compressive	217	217	100	MPa		
Strength, s _{ci} (lab Value)						
GSI	66	66	66			
m _i	32	32	16			
Disturbance Factor	0	0.8	0			
Young's Modulus, E	75.7	75.7	37.5	GPa		
Poisson's ratio, v	0.25	0.25	0.25			
Hoek and Brown Failure Criterion - Parameters						
m _b	9.50	4.23	4.75			
S	0.022	0.0058	0.022			
а	0.50	0.50	0.50			
C	2.53	1.42	1.63	MPa		
φ	71.3	68	64.11	deg		
Rock Mass Parameters						
Uniaxial Compressive	32.59	16.36	15.02	MPa		
Strength of rock mass, s _c						
Rock Mass Tensile Strength, s _t	0.52	0.29	0.48	MPa		
Rock Mass Strength, s _{cm}	91.82	60.31	30.85	MPa		
Elastic Modulus of Rock	49.44	18.18	24.49	GPa		
mass, E _{rm}						
Bulk Modulus, K	28.15	10.3	14.07	GPa		
Shear Modulus, G	20.24	7.44	10.12	GPa		
Density	2600	2600	1800	kg/m ³		

EXCAVATION SEQUENCE

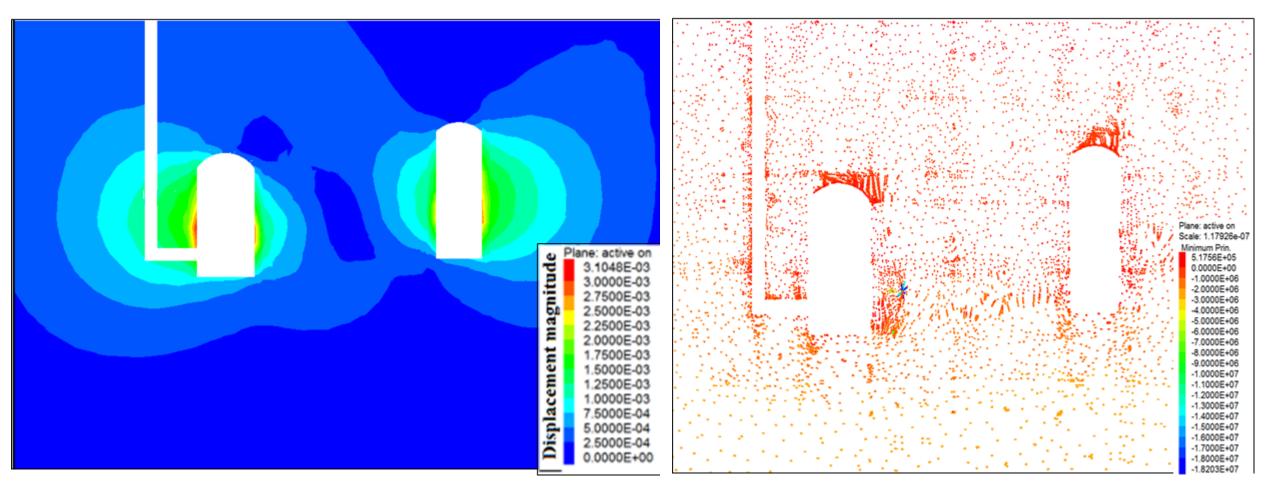
Stag	Components						
e							
1	Main Intake Tunnel						
	Surge Pool			Pump House			
	EL, m	EL, m	Height	EL, m	EL, m	Height,	
	From	То	, m	From	То	m	
2	459.67	448.67	11	483	474	9	
3	493	484	9	451.5	442.5	9	
4	484	477	7	474	468	6	
5	477	469	8	468	462	6	
6	469	459.67	9.33	462	451.5	10.5	
7	4 No's Draft Tube Tunnels						
8	Vertical Shaft						
9	Inclined Tunnel connecting Vertical Shaft						
10	Vertical Delivery Shafts						
11	Horizontal Delivery Tunnels Vertical Delivery Shafts						



INSITU STRESS

The insitu stress measurement at pump house was carried out by NIRM (2014) by hydro fracturing method. The measurement was done in NX size borehole drilled up to a depth of 70.30m. Following are the summary of results

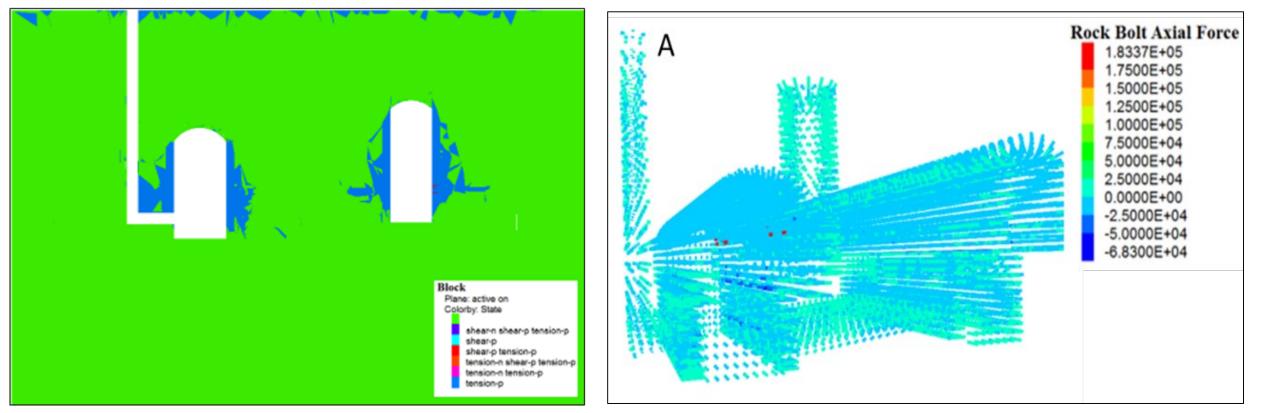
Principal Stresses	
Vertical Stress (σ_v) in MPa (Calculated with a rock cover 42.00	1.11
m and density of rock = 2.7 gm/cc)	
Maximum Horizontal Principal Stress ($\sigma_{\rm H}$) in MPa	1.84
Minimum Horizontal Principal Stress (σ _h) in MPa	1.24
Maximum Horizontal Principal Stress direction	N 150 ⁰
$\mathbf{K} = \boldsymbol{\sigma}_{\mathrm{H}} / \boldsymbol{\sigma}_{\mathrm{v}}$	1.65


JOINT PROPERTIES

Property	Value	Unit
Joint Normal Stiffness	100	GPa/m
Joint Shear Stiffness	75	GPa/m
Joint Cohesion	8	MPa
Joint Friction	46	Deg.
Joint Tensile Strength	8	MPa

Since there is no test data available regarding to joint properties, following data are considered in the model.

RESULTS AND DISCUSSION



Displacement contours

Minimum principal stress distribution

RESULTS AND DISCUSSION

State of rock mass

Axial force in rock bolts after complete excavation

CONCLUSIONS

- > The crown displacements were negligible
- > Wall displacements in the pump house and surge pool vary in the range of 2 to 3.7 mm
- The supports were found capable of arresting the movements further away from the cavern rock line.
- > It may be noted that Strength to Stress ratio at most of the places is more than one
- The required supports for surge pool and pump house are estimated using empirical approach and their adequacy for the current geological setup was ensured using 3D discontinuum model.
- > The support considered for pump house and surge pool is given below:
 - 25 mm diameter 5 m long rock bolt in crown @ 2.3 m c/c spacing
 - 25 mm diameter 6 m long rock bolt in walls @ 2.5 m c/c spacing
 - 100 mm SFRS to be put in crown as well as in the walls

Following recommendations are made to improve the stability of the caverns with the support system

- Controlled blasting techniques may be adopted in order to minimize the damage in the immediate vicinity of the excavation
- Systematic instrumentation needs to be implemented and observed during excavation to reconcile the model results

Thank You