Convergence-induced Stresses on Casing and Cementation due to Salt Cavern Operation

BIRGIT HORVÁTH & DIRK ZANDER-SCHIEBENHÖFER

5th International Itasca Symposium | Vienna | 19/02/2020
Convergence-induced Stresses on Casing and Cementation due to Salt Cavern Operation

Theoretical Background
Convergence-induced Stresses

Case Study
Design and Analysis
Results and Discussion

Conclusion
THEORETICAL BACKGROUND

Convergence-induced Stresses
Convergence-induced Stresses

- Surface subsidence
- Stressing due to operation
- Rock mass deformation

Diagram showing subsidence maximum, casing strings, cavern, and rock layers.
Convergence-induced Stresses

volume of the subsidence bowl = \(f(\text{convergence volume, time}) \)
CASE STUDY

Design and Analysis
Simulation Model

- Quarter-segment section
- Horizontal overburden layers
- Oil storage cavern

- Selected outer boundaries of the simulation model do not represent the real pillar dimensions in the cavern field.

⇒ Investigation of deformation status close to wellbore axis and up to the surface

- Borehole completion elements were discretized by circular ring elements.

- 600 m
- 2,110 m
- Zoomed top view (ca. 1 x 1 m)

- Geology:
 - Quaternary
 - Claystone
 - Limestone
 - Marlstone
 - Anhydrite
 - Salt
 - Cavern

- Cementation of anchor pipe
- Anchor pipe
- Cementation of last cemented casing
- Last cemented casing
Essential borehole completion phases were discreetly integrated into the numerical simulation.

Connection between casing/cementation/rock mass assumed as completely intact.
History-Match – CONVERGENCE

CAVERN VOLUME LOSS

⇒ operation / stressing
⇒ creep of salt
Initial Calculation

- connection casing/cementation/rock mass
- material parameters overburden
- realistic estimate of creep behaviour
- cavern contour and volume
- quality of casing
- cavern operation mode
- quality of cementation

basic configuration
Various Calculations

- basic configuration
- connection behaviour of casing/cementation/rock mass
- reduced stiffness of overburden
- modified cementation of LCC
- reduced stiffness of overburden and modified cementation of anchor pipe
- reduced stiffness of overburden
- modified cementation of anchor pipe
Basic Configuration
Von Mises Comparative Stress

start of operation

in comparison to plasticity limit

LCC
- cementation LCC
- anchor pipe
- cementation anchor pipe
- geology close to wellbore
- geology
- geology apart from wellbore
CASE STUDY

Results and Discussion
Basic Configuration
Von Mises Comparative Stress

Von Mises Equivalent Stress $\times 10^3$

after 30 years of operation

- LCC
- cementation LCC
- anchor pipe
- cementation anchor pipe
- geology close to wellbore
- geology
- geology apart from wellbore

plasticity limit exceeded

- surface quaternary claystone
- limestone
- marlstone
- anhydrite
- salt

Von Mises Equivalent Stress $\times 10^3$
Reduced Stiffness of Overburden
Von Mises Comparative Stress

after 30 years of operation

- LCC
- cementation LCC
- anchor pipe
- cementation anchor pipe
- geology close to wellbore
- geology
- geology apart from wellbore

- surface quaternary claystone
- limestone
- marlstone
- anhydrite
- salt
Modified Cementation of LCC
Von Mises Comparative Stress

after 30 years of operation

- LCC
- cementation LCC
- anchor pipe
- cementation anchor pipe
- geology close to wellbore
- geology
- geology apart from wellbore

surface quaternary claystone
limestone
marlstone
anhydrite
salt
Connection of Casing/Cementation/Rock Mass

Von Mises Comparative Stress

after 30 years of operation

- LCC
- cementation LCC
- anchor pipe
- cementation anchor pipe
- geology close to wellbore
- geology
- geology apart from wellbore

Diagram shows stress distribution with layers labeled as:
- surface quaternary claystone
- limestone
- marlstone
- anhydrite
- salt

Reduced maximum stress observed.
Summary

✓ Calculated stressing of cementation remained below assumed ultimate strength.

✓ In the overburden section the calculated stressing is below the plasticity limit of steel.

 o Plasticity limit of steel was exceeded in the salt section close to the casing shoe
 ⇒ as wireline measurements show steel can sustain relative large plastic strains

 o Variation of the connection behaviour casing/cementation/rock mass shows a reduction of the casing stressing.

after 30 years of operation
CONCLUSIONS
Conclusion

Convergence-induced stresses

Stressing of LCC increases over time

\Rightarrow creep of salt

Limited monitoring methods from surface

\Rightarrow numerical modelling in addition

LCC can withstand the induced stressing

\Rightarrow pronounced ability for plastic deformation
Conclusion

Site Specific Assessment

- Numerical Modelling
 - Behaviour of complex system casing/cementation/rock mass
 - Integration of joints of LCC

Site-related Input Data

Monitoring
Thank you for your attention!
Questions?

BIRGIT HORVÁTH
Birgit.Horvath@deep-kbb.de
Phone: 49 511 542817 - 515
Fax: 49 511 542817 - 11

DIRK ZANDER-SCHIEBENHÖFER
Dirk.Zander@deep-kbb.de
Phone: 49 511 542817 - 43
Fax: 49 511 542817 - 11