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 A Rock Mass is an assemblage of Rock Blocks
which are separated by Discontinuities

 The rock mass behaviour and the associated                
rock-support interactions depend on:
 properties of the rock blocks

 properties & structural pattern of joints 

 in-situ stress conditions 

 For massive to moderately fractured rock masses          
in high stress environments the role of the Rock 
Blocks is important because:
 pre-existing discontinuities are locked 

 brittle damage dominates the failure processes

 or combined stress-structure failure mode  

Background Info



Rock blocks:

 are volumes of unjointed rock material

 their properties are influenced by scale effects and the  
presence of micro- and meso-scale structural defects

 such defects impact significantly their mechanical behaviour 
and it is therefore critical to account for their weakening effects
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known knowns
The Unconfined Compressive Strength (UCS)             

decreases with increasing scale due to an increased 
heterogeneity as a function of block volume

known unknowns
as defect intensity increases and/or defect strength decreases                                                    

then rock block strength decreases

…only limited options are available for estimating the           
UCS of rock blocks based on qualitative descriptions (e.g. 

GSI) or quantitative measurements (e.g. MRMR)
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Current Work

 A scaling study was performed: UDEC Grain-Boundary Models 
(GBM) & FracMan micro-Discrete Fracture Networks (DFNs)

 The Synthetic Rock Blocks (SRB) can capture both the crack                         
evolution processes and the effect of pre-existing defects   

 A series of unconfined compression tests were run on                                      
samples of varying sizes and defect geometries/strengths 

a) to better understand the strength reduction of rock blocks 
as a function of scale, defect geometry and defect strength

b) to develop a practical tool for quantifying the                                  
unconfined strength of defected rock blocks
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1. Calibrate lab-scale (intact) GBM against a set of 
target macro-properties (UCS = 50MPa)

2. Calibrate the micro-properties of large-scale non-
defected samples to express only the effect of size

3. Run UCS tests on large-scale defected samples 
under progressively increased defect intensities 
(frequency & persistence) and defect strength

4. Refine existing empirical approaches and develop a 
methodology for estimating the UCS of blocks  

Approach

 
 

 

 

 

 

GBM UDEC UCS tests

(a) (b)

(c) (d)

3D μDFN
generated in Fracman



Lab-scale intact GBM Calibration

Target macro-properties
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Block-scale non-defected GBM Calibration
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The micro-properties of three non-defected
GBM large samples were re-calibrated to 
capture the expected size-dependant strength of 
homogenous rock blocks (i.e. 80% of UCS)

50 x 125 mm

100 x 250 mm 200 x 500 mm 400 x 1000 mm

(Hoek and Brown, 1980a)



Block-scale defected UCS tests
Fracture intensity P10 [1/m]
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 Several μDFN geometries were embedded into the large scale UDEC GBMs

 A series of unconfined compression tests were run on                                    
samples of varying sizes and defect geometries/strengths 
 P10 = 5, 10, 20, 40 [defects/meter]
 Persistence = 0.01, 0.02, 0.04, 0.1 [m]
 Case 1: ‘open’ defects (strength purely frictional, zero cohesion & tensile strength)
 Case 2: ‘healed’ defects (cohesion and tensile strength were increased by 50% & 

100% in respect to the baseline intact rock GBM strength)



 Rock block UCS strength is strongly influenced by the 
presence of pre-existing open defects

 there is a systematic and progressive strength                   
reduction as defect intensity and persistence increase

 the decay of strength follows a power-law trend and 
beyond a certain defect intensity the strength approaches    
a horizontal asymptote (i.e. REV)

 the rate of strength reduction increases as defect 
persistence increase  

 when the defect intensity is combined with the defect 
persistence (i.e. Defect Intensity × Persistence = DIP 
factor), a very good clustering is observed in the data set

Standardise UCS data using the
“Defect Intensity × Persistence” factor   
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Case 1 - “open” defects: 



 The results from the current study were plotted together 
with results from other numerical investigations 

 All studies show a systematic strength reduction with 
increasing defect intensity but the shape and rate of 
strength loss clearly depends on the scale of the sample 
under investigation (i.e. intact-block-mass scale)

Case 1 - “open” defects: 
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Defect persistence = 0.01 m
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 the defects were strengthened by 50% and 100% in 
respect the surrounding grain contact-to-contact strength

 The progressive increase in defect strength from 0% to 
100% improves significantly the UCS of the samples as 
the defects become “invisible” within the GBM matrix

 a systematic strength improvement is achieved as defect 
strength increases from 0% to 100%

 The strength of defects overrides the effect of persistence  
as defect strength increases. For the 100% defect 
strength case the effect of persistence has disappeared

Case 2 - “healed” defects: 



 The systematic strength reduction/improvement  
with defect intensity, persistence and strength 
allowed to standardise the data

 Refined approaches for estimating the UCS of 
defected blocks are proposed in the form of 
strength reduction envelopes

 The combination of these charts with the mGSI-
strength relationship (Stavrou and Murphy, 
2018) allowed to quantify the mGSI in terms of 
specimen size and defect geometry-condition

 Limitations: the study reflects the results of 2D 
simulations (i.e. strength is under-estimated)
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Summary

 the behaviour of rock blocks is a significant factor controlling the rock mass 
behaviour (i.e. deformations, failure modes, fragmentation, stand-up time, etc.) 

 especially when the design relies on discontinuum analysis where blocks are 
simulated explicitly, then the adopted block properties influence the 
specification of reinforcement/support solutions and construction stages. 

 a series of simulated UCS tests were performed to develop a methodology for 
estimating the strength of rock blocks considering the influence of scale and 
pre-existing defect

 charts for assessing the UCS of blocks are proposed considering scale effects 
and the geometry/condition of the defects (needs improvement for 3D effects)  

 the study demonstrates the strong potential of using synthetic rock mass 
modelling techniques to develop quantitative guidelines 
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