ITASCA Archaeoseismological investigation of the deformation of the ruin of the crusader fortress Ateret, Israel with 3DEC

Archaeoseismology

- Damages from pre-instrumental earthquakes in archaeological sites
- Extending the database for earthquake catalogues
- New insights into contemporary history

2

Working area Israel

(after Schweppe et al. 2017)

Working area Israel

(after Hinzen et al. 2017)

(Photo left: Hinzen)

Earthquake history of the site

- Abandoned in 1179
- 25. May 1202

✤ M_S 7.4¹

- Offset 1.25 m
- 30. October 1759
 - ♦ M_S 6.6¹
 - Offset 0.5 m

(¹ Ambrasyes and Melville 1988)

After Ottoman mosque construction. After the 1759 earthquake, present state

(after Ellenblum et al. 2015)

7

Questions addressed to the site

- Does the dislocation velocity affect the deformation pattern of the fortification walls?
- Is it possible to decide, based on the deformation pattern of the wall, whether the total offset is the result of a rapid coseismic movement or does slow creep movement have to be considered as well?
- Can new insights be gained on the dislocation velocity of the individual events?
- Is it possible to discern the amount of slip by which the two sides of the fault contributed to the total displacement? And in the case of a coseismic displacement, a follow up question is: Is it possible to distinguish between the effects of the two earthquakes?

Reconstruction

Model Creation

Simulations

- In total 58 Simulations
- Separated into two scenarios

First Scenario

• Only one movement

• Four different movement directions with slip velocities ranging from 0.1 – 5.0 m/s

Results

Results

EP north & WP south

EP & WP north

- Eastern plate moved in northern direction
- 1.75 m with 3 m/s

Second scenario

- Simulation of the two earthquake
 - First offset 1.25 m
 - Second offset 0.5 m
 - Slip velocities between 1.0 and 5.0 m/s

Results

Intensity VII¹

- Offset: 1.25 m Velocity: 3.0 m/s
 - ✤ Intensity IX¹ (Lit: VIII-IX²)
- $. M_{\rm S} 7.4^2$ (Lit: M_S 7.6²)
- Offset: 0.5 m Velocity: 1.0 m/s
 - $M_{\rm S} \, 6.7^2$ (Lit: $M_{\rm S} \, 6.6^4$)

(¹ Wald *et al.* 1999) (⁴ Ambrasyes and Barazangi 1989) (² Ambrasyes and Melville 1988) (³ Sbeinati *et al.* 2005)

(Lit: IV-VIII³)

Conclusion

- DEM good possibly to quantify parameters of past earthquake
- In certain situations (as in Ateret) information about tectonic movement is possible
 - Good documentation of the archaeological site
 - Option for the reconstruction (archaeological, historical information)
 - Knowledge of the used building materials

Thank you very much!

ITASCA

Consultants GmbH