Accounting for long term effects for the structural design of deep tunnels in claystones

Victor Augusto RIBEIRO LIMA, Jean-François BRUCHON and Sébastien BURLON
Setec Terrasol
Summary

1. Introduction
2. Accounting for long term effects
3. Calibration with measurements in terms of displacements
4. Comparison in terms of structural forces
5. Conclusion
Introduction

- Complex behaviour of claystones or shales: multiscale material, thermo-hydro-mechanical couplings, brittle/ductile, anisotropy, short and long term behaviour ...
- Large bibliography with complex models: hard to choice and certainly to use
Introduction

- Complex behaviour of claystones or shales: multiscale material, thermo-hydro-mechanical couplings, brittle/ductile, anisotropy, short and long term behaviour ...
- Large bibliography with complex models: hard to choice and certainly to use

In situ measurements
Different models tested

Seyedi et al. (2017)
Introduction

From an engineer point of view, where structures have to be designed:
- “simple” models are preferred but able to catch evolution of forces in structure
- especially when long term effects play an important part in final loadings = extrapolation

Normal force, bending moment?
Introduction

Example of “simple” model in the context of the Meuse/Haute-Marne laboratory - Saitta et al. (2017):
- Mohr-Coulomb’s criterion and Norton’s law
- 2 domains define from in-situ observations (intact and disturbed zones) -> anisotropy forced

- In consistency with principal results in terms of displacement of the soil in a quasi-isotropic stress state and with isotropic laws

Saitta et al. (2017)
Accounting for long term effects

Norton’s law, initially developed for steels at high temperatures (1929)

- visco-plastic strain rate:

\[
\dot{\varepsilon}_{ij}^{vp} = \frac{3}{2} (\dot{\varepsilon}_{vp}) \frac{s_{ij}}{q} \text{ where } \dot{\varepsilon}_{vp} = \gamma < q - q_0 >^n
\]

\(\dot{\varepsilon}_{vp}\) depends only of deviatoric stress \(q\)
independent of mean stress \(p\)
Accounting for long term effects

Modified Norton’s law
- \(\dot{\varepsilon}_{vp} \) depends on the strength mobilization \((p,q\text{ and } \text{Lode angle } \theta)\):

\[
\dot{\varepsilon}_{ij}^{vp} = \frac{3}{2} (\dot{\varepsilon}_{vp}) \frac{s_{ij}}{q} \text{ where } \dot{\varepsilon}_{vp} = A \times f(X)
\]

\[
f(X) = \frac{1}{1 + \left(\frac{a}{X}\right)^a} \quad f(X) \in [0,1]
\]

\[
X = \frac{d_1}{d_2} \quad X \in [0, +\infty]
\]
Accounting for long term effects

Modified Norton’s law
- $\dot{\varepsilon}_{vp}$ depends on the strength mobilization (p, q and Lode angle θ):

$$
\dot{\varepsilon}_{ij}^{vp} = \frac{3}{2} \left(\dot{\varepsilon}_{vp} \right) \frac{s_{ij}}{q}
$$

where $\varepsilon_{vp} = A \times f(X)$

with

$$
f(X) = \frac{1}{1 + \left(\frac{a}{X} \right)^{\alpha}} \quad f(X) \in [0, 1]
$$

$$
X = d_1 \frac{d_1}{d_2}
$$

$X \in [0, +\infty]$

$$
d_1(q) = <q - q_0>
$$

$$
d_2(p, q, \theta) = \frac{|M(\theta) \times p + q - N(\theta)|}{\sqrt{M(\theta)^2 + 1}}
$$

$$
\cos 3\theta = \frac{3\sqrt{3}}{2} \times \frac{J_3}{J_2^{3/2}}
$$
Accounting for long term effects

Modified Norton’s law

- \(q = q_0 : X = \frac{d_1}{d_2} = 0 \rightarrow f(X) = 0 \rightarrow \dot{\varepsilon}_{vp} = 0 \)
- \(q = q_{max} : X = \frac{d_1}{d_2} = \infty \rightarrow f(X) = 1 \rightarrow \dot{\varepsilon}_{vp} = A \)

\[
f(X) = \frac{1}{1 + (\frac{1}{X})^\alpha}
\]

\[
f(X) = \frac{1}{1 + (\frac{1}{X})^a}
\]

\[\theta = \pi/3, \quad p = 13.8 \text{ MPa}, \quad q_0 = 0, \quad c = 6 \text{ MPa} \quad \text{and} \quad \phi = 20\]
Calibration with measurements in terms of displacements

Application to the Meuse/Haute-Marne laboratory

Parameters:

\[\varepsilon_{vp} = A \times \langle q - d_r \rangle^n \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>2.5 \times 10^{-59}</td>
</tr>
<tr>
<td>(n)</td>
<td>6.8</td>
</tr>
</tbody>
</table>

\[\varepsilon_{vp}(t) = A \times \left(\frac{1}{1 + \left(\frac{a}{(d_1/d_2)} \right)^\alpha} \right) \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>4 \times 10^{-11}</td>
</tr>
<tr>
<td>(a)</td>
<td>2</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>3</td>
</tr>
</tbody>
</table>
Comparison in terms of structural forces

Forces in rigid structure

- Normal force: quite similar
- Bending moment: quite different and more logical with in-situ observations (to be confirm)
- Bending moment more sensitive with variations of normal and shear stresses.
Conclusion

- Models (simple and complex) have to be compared to measurements in terms of displacements and forces (only displacement not sufficient for structure design)
- Modified Norton’s law proposed here:
 - is still a simple law based on a simple approach
 - seems more reliable
- Others comparisons have to be done to confirm these results

- Test new idea is quite simple with Flac thanks to fish functions!

Acknowledgements
Andra for experimental data used in this study