Tunnelling underneath a heritage-listed building in the heart of Sydney

J. Rabanser¹, C.J. Wang², & H. Lagger¹

18/02/2020

¹ Arup, London, United Kingdom; ² Arup, Sydney, Australia

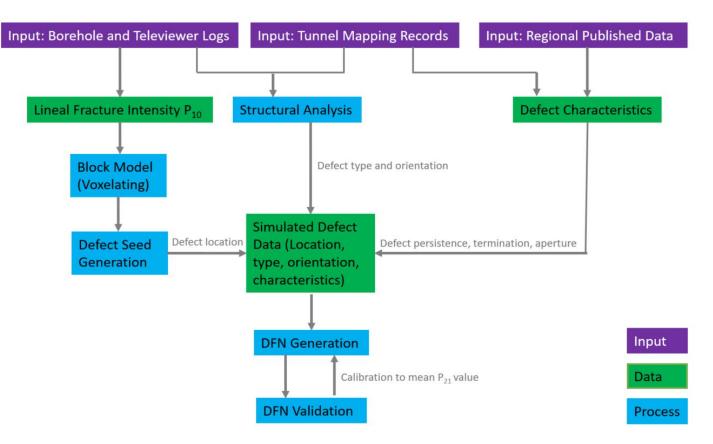
ARI

Content

- Project description
- Geological Conditions
- Development of reference DFN
- Development of 3DEC Fracture Networks
- Comparison of Fracture Networks
- Numerical Analyses 3DEC
- Conclusions

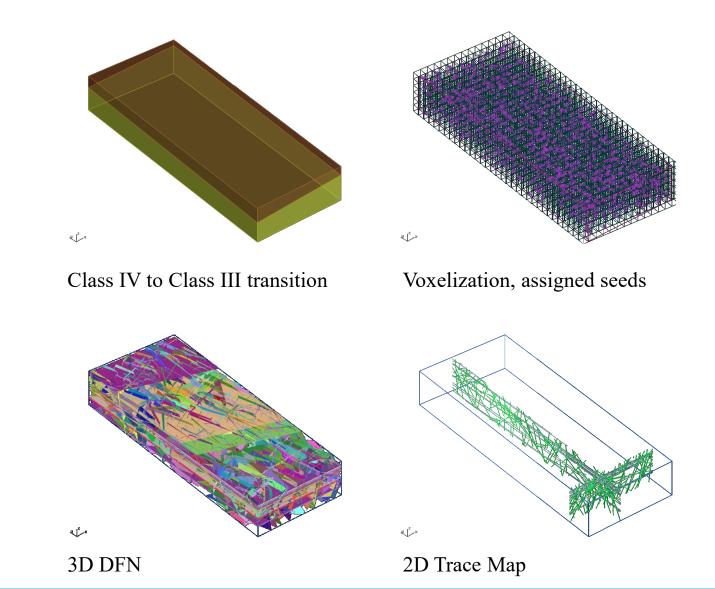
Project Description

- Tunnel connecting two shafts
 - Length: $\sim 65m$
- Horse shoe profile
 - Tunnel width: $\sim 9m$
 - Tunnel height: ~ 6m
- Shallow cover
 - \sim 3.5m cover to pad footings of heritage-listed building
- Pad footings
 - Loads up to 10MN
 - Located centrally above tunnel crown
 - Longitudinal spacing: 5m
- Several underground structures in vicinity


Geologic Conditions

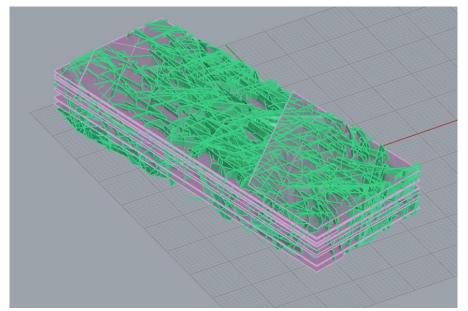
- Hawkesbury Sandstone of the Sydney Basin
 - Coarse-grained quartz sandstone
 - Classified by Pells et al. (1998) into Sandstone Classes (Classes I to V) to group rocks exhibiting similar engineering properties and behaviour.
- Site stratigraphy
 - Upper Layer: 10m Class IV
 - Middle Layer: 15m Class III
 - Bottom Layer: Class II
- Tunnel located ~1m below Class IV to Class III transition
- Major discontinuities
 - Sub-horizontal bedding planes
 - Two orthogonal sub-vertical joint sets (orientated towards NNE and ESE)
- High locked-in tectonic stress horizontal stress

Development of reference DFN


- Discrete Fracture Network
 - Fractures are generated using stochastic processes
- Defect location
 - Voxelization of Model
 - Lineal fracture intensity P₁₀
 randomly assigned into
 each voxel
- Defect type and orientation
 - probability of occurrence
- Defect persistence
 - simulated at each fracture seed location

Development of reference DFN

- Input Data Source
 - Borehole Logs
 - Televiewer Logs
 - Tunnel Mapping Records
 - Regional Published Data
- Fracture Types
 - Sub-horizontal bedding
 - Two orthogonal sub-vertical joint sets
 - Random joint set
- Volume of fractured Zone
 - $-27.000m^3$

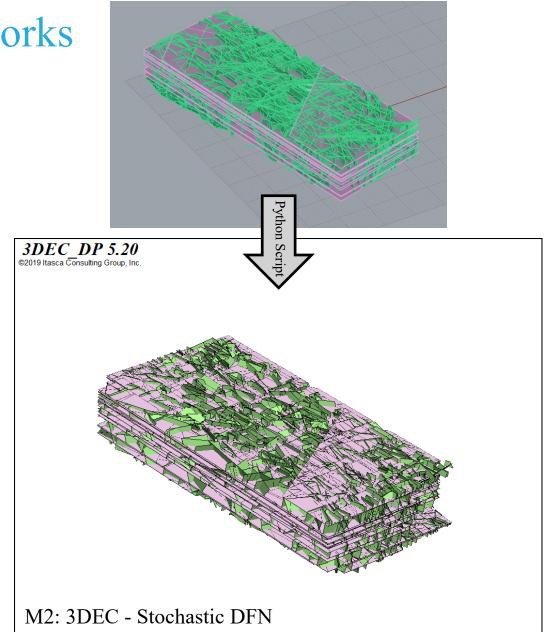


Development of reference DFN

• Validated

- Comparison of Areal fracture intensity P₂₁
- Randomly generated cross sections
- Tunnel mapping records
- Calibration
 - cleaning fracture seeds (remove / add seeds)
 - manipulation of fracture persistence's statistical attributes
- Robustness of DFN
 - Five simulations to ensure model parameter robustness against P_{21} validation

M1: Stochastic DFN

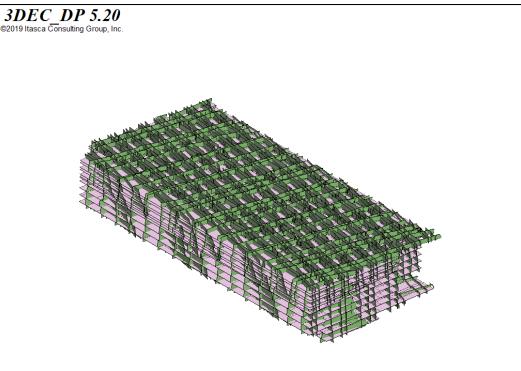


Development of 3DEC Fracture Networks

• Incorporation of *M1: stochastic DFN*

- Direct import (*no partial cracks allowed*) not possible
- 3DEC in-built *jset dfn* command not possible
- Arup developed work flow
- Fracture Network Generation
 - Single *jset* commands for each DFN joint
 - Termination criteria specified by persistence (probability of splitting blocks along the joint path)
- Fracture Network Validation
 - Fisch function for P_{32} comparison with P_{32} of M1
 - Adjusting fish variable for persistence/probability
 - Export trace map evaluate P_{21}

Development of 3DEC Fracture Networks


- Fracture characteristics based on published data
 - Standard deviation for dip and dip direction
 - Comparison of published data vs. DFN approach
 - Sanity check of results

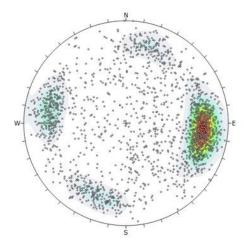
Defect	Dip Angle	Dip Direction	Spacing	Trace Lengths
Туре	[°]	[°]	[m]	[m]
Bedding	0 to 5	160 to 200	1 to 5	>100
Cross	15 to 30	0 to 45	0.2	<4
Bedding				
Joint 1	70 to 90	100 to 140	2 to 10	H ¹ : >10m, V ² : 30%>10m, 40% 5-10m,
				30% <5m
Joint 2	70 to 90	350 to 020	2 to 20	H ¹ : >10m, V ² : 30%>10m, 40% 5-10m,
				30% <5m
Notes:				

¹ Horizontal direction.

² Vertical direction.

After Bertuzzi & Pells, 2002. Class III Sandstone

M3: 3DEC - manually generated fractures



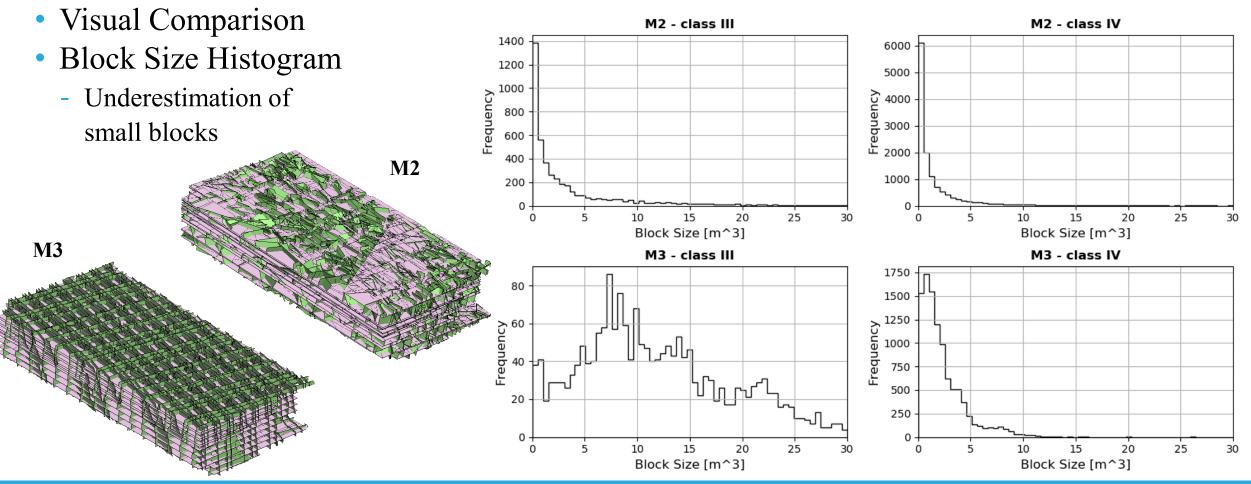
Comparison of Fracture Networks


- Fracture Intensity
 - Areal fracture intensity P₂₁
 - Volumetric Fracture Intensity P₃₂
- Stereo plot

Model	Class	No. of sections	P ₂₁ – east-west	No. of sections	P ₂₁ – north-south	P ₃₂	
Tunnel Mapping	III	17	average: 1.70 (0.92 – 2.90)				
(adjacent tunnels)	IV	26	average: 2.32 (0.72 – 4.39)				
M1: Stochastic DFN	III	10	1.82	10	1.54	2.06	
WIT. Stochastic DFIN	IV	10	2.48	10	2.12	2.51	
M2: 3DEC – Stochastic	III	7	1.88	3	1.71	1.96	
DFN	IV	7	3.1	3	2.76	2.57	
M3: 3DEC – manually	III	2	1.21	2	1.19	1.39	
generated fractures	IV	2	2.37	2	2.02	2.33	

M1: Stochastic DFN

M2: 3DEC - Stochastic DFN

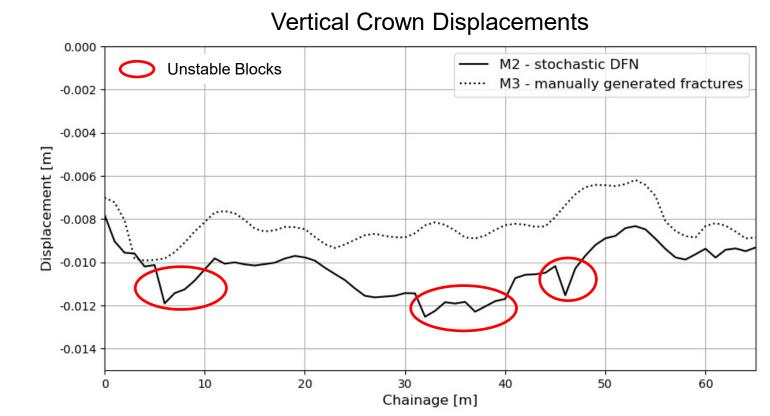


¹⁰ 5th International Itasca Symposium – Vienna 2020

ARUP

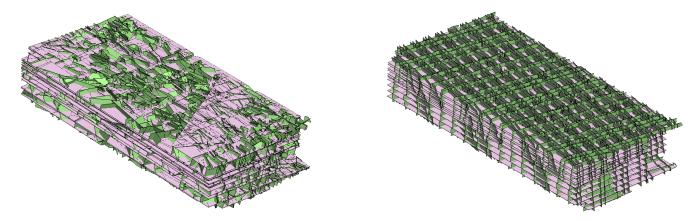
Comparison of Fracture Networks

• Comparison of *3DEC – Stochastic DFN* and *3DEC – Manually generated fractures*



¹¹ 5th International Itasca Symposium – Vienna 2020

Numerical Analyses – 3DEC


- Similar displacement pattern
- Manually generated Fractures
 - Lower magnitude due to lower fracture intensity
 - No unstable blocks
- Stochastic DFN
 - Potentially unstable blocks

Conclusions

- Incorporation of stochastic generated DFN in 3D numerical analyses
- Large amount of borehole data and tunnel mapping records allowed to calibrate and validate stochastic generated DFN against the site specific
- Manually generated fracture networks result in unrealistic block size distributions
- Fracture networks purely based on literature show too low fracture intensities
- 3DEC input DFN can easily be exchanged for multiple simulations

Glück Auf!

