ITASCA

Technische
Universität
Braunschweig

Anisotropic permeability in the EDZ of drifts in rock salt A numerical approach

Christian Missal \& Joachim Stahlmann
$5^{\text {th }}$ International Itasca Symposium - Vienna, 2020

Rock salt

Rock salt - Mechanical behavior

Rock salt - Excavation damge zone (EDZ)

Stress state

Damage in the EDZ

[Missal, 2019]

Paths of fluid flow in salt mechanic

Paths of fluid flow in rock mechanic

Joints of group 1

[Rodatz, 1973]

Orientation of cracks and resulting permeability

Compression

Extension

$$
\left\{\varepsilon^{d}\right\}=\int_{t=0}^{t}\left(\left\{\dot{\varepsilon}^{t}\right\} \cdot \mathrm{d} t+\left\{\dot{\varepsilon}^{v}\right\} \cdot \mathrm{d} t+\left\{\varepsilon^{z}\right\}\right) \mathrm{d} t
$$

Orientation of cracks and resulting permeability

Compression

Extension

Influencing factors on the permeabilty

Crack spectrum

- Damage-induced strains
- Stress state

Crack permeability

- Crack spacing
- Crack roughness

Influencing factors on the permeabilty

Crack spectrum

- Damage-induced strains
- Stress state

Crack permeability

- Crack spacing
- Crack roughness

Crack cross-linking
Fluid pressure / normal stress

$$
\rightarrow \Delta 2 x_{N}
$$

[Missal, 2019]

Functional relationship

Crack cross-linking

Schematic relationship

Generic drift with sealing structure Model

Dimensions of the model

- Width

60 m

- Height

75 m

- Length 8 m
- Zones 177.728

Simulation

- Initial stress state Drift in 600 m depth $\rightarrow 14 \mathrm{MPa}$
- Excavation of the drift
- Construction of the sealing dam

Simulation time 50 years

Generic drift with sealing structure Damage and permeabilty after 25 years

Damage-induced

Permeability $\left(\log 1 \cdot 10^{x}\right)\left[\mathrm{m}^{2}\right]$ $3.0000 \mathrm{E}-04$.0000E-04 $0.0000 E+00$ $-1.0000 \mathrm{E}-04$ -2.0000E-04 -3.0000E-04 4.0000E-0 -5.0000E-04 -6.0000E-04 7.0000E-04 8.0000E-04 -9.0000E-04 -1.0000E-03

Radial direction

Generic drift with sealing structure Axial permeability before and after installing the dam

[Missal, 2019]

ITASCA"

Conclusions

Extension of the constitutive model TUBSsalt

- Anisotropic permeability due to the damage-induced dilatancy
- The absolute crack widths are identified using the density function of the Rayleigh distribution
- Taking into account the associated damage component and the normal stress

More realistic description of the permeability in the EDZ
\rightarrow Optimization of the verification of the functionality of dam structures

But: These theoretical considerations have to be verified with a suitable test program

ITASCA

Technische Universität
Braunschweig

Clückauf!

Christian Missal \& Joachim Stahlmann
$5^{\text {th }}$ International Itasca Symposium - Vienna, 2020

