STRUCTURAL CONTROL ON STRESS VARIABILITY AT FORSMARK

Matti Hakala Jouni Valli Jesse Ström

SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO

- SKB is the Swedish Nuclear Fuel and Waste Management Company
- Responsible for management and safe final disposal
- Site selected in 2009
- Construction application for repository submitted in 2011
- Located in Forsmark, Sweden
- Construction to take ca. 10 years
- Ca. 6000 canister capacity
- Depth ca. 470 m

SITE CHARACTERIZATION

- Began in the 1970's
- Geological, hydrological, ecological and social impacts studied
- On-going investigations include:
 - Geology
 - Thermal properties
 - Rock Mechanics
 - Hydrogeology
 - Hydrogeochemistry
 - Transport properties
- Resulted in regional and local geological models
- Rock mass quality good, stiff, strong and homogeneous
- Lower quality largely related to fault zones (110)

IN SITU STRESS STATE

- Good understanding required for safe final disposal
- Fennoscandian area dominated by plate tectonics:
 - Mid-Atlantic ridge-push
 - Collision of the Eurasian and African plates in the alps
- Glaciation effects significant
- Thrust fault conditions promoted shear of brittle fault zones
- Stress state affected

OBJECTIVES & METHODS

- Better understanding of observed variation
- Verification of rock and fault parameters

- Current stress interpretation (Martin 2007) based on 130 overcoring and 240 hydraulic stress measurements
- Indicates NW-SE orientation of σ_{H}
- Mean magnitudes of $\sigma_{\rm H}$ and $\sigma_{\rm h}$ 41 and 23 MPa, respectively

GEOMETRY

Simulations performed using 3DEC

Performed in two phases

• Phase 1:

2.1 km

- Planar & undulating fault zone geometry
- Shear strength
- Phase 2:
 - Affect of thrust simulation
 - Thrust orientation varied
 - Glaciation simulated

GEOMETRY / ZONING

SIMULATION PARAMETERS

- Isotropic and elastic rock mass
- Divided into four domains
 - Main rock mass
 - Three fracture domains
- Fault zone parameters varied in individual cases
- Friction and cohesion maintained after failure

Parameter	kn	ks	coh	fric	ten
	(MPa/mm)	(MPa/mm)	(MPa)	(°)	(MPa)
Deformation zone					
All, except Singö	80	20	0.7	36	0.001
Singö	0.2	0.01	0.4	31.5	0.001

TARGET IN SITU STRESS STATE

- Full gravitational water pressure applied
- Variable excess pore pressure applied when simulating glaciation

Depth range	σ_{H}	σ_{H} trend	σ_{h}	σ_{h} trend	σ_{V}
(m)	(MPa)	(°)	(MPa)	(°)	(MPa)
0-150	19+0.008z	145	11+0.006z	55	0.0265z
150-400	9.1+0.074z	145	6.8+0.034z	55	0.0265z
400-600	29.5+0.023z	145	9.2+0.028z	55	0.0265z

z is depth below rock surface in metres

GLACIATION

Glacial stress evolution

---- sH

PHASE 1

- Seven cases as both undulating and planar = 14 cases
- Largely varied fault zone shear strength: $\phi = 10 - 36^{\circ}$, c = 0.3 - 0.7 MPa
- Applied in situ stress directly

PHASE 2

- Lower stress values with narrow variation in Phase 1 -> boundary thrust
- Glaciation cycle also added
- Only undulating geometry
- 15 cases

• ϕ 36° & 0.7 MPa

• ϕ 20° & 0.3 MPa

Planar vs Undulating geometry

Effect of glaciation with undulating geometry

CONCLUSIONS

- The measured stress state can be considered reliable:
 - Best match with observed variation using thrust
 - Glaciation disturbances required as well
 - Undulating fault geometry recommended
- Resulting mean stresses insensitive to parameters
- Lower yet realistic parameters mainly increase variation
- Fairly good correlation with stress measurements
- Low magnitudes near the surface possible \rightarrow low stress measurements not to be discarded
- High magnitudes possible, but not to the level observed \rightarrow some measurements affected by heat \rightarrow reliability ranking for all stress measurements in progress