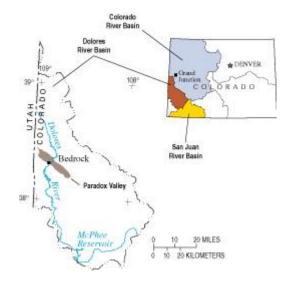


Geo-mechanical and Flow Modeling for Paradox Valley Unit

Christine Detournay, Ed Dzik Itasca Consulting Group, Inc., Minneapolis, MN, USA

Christopher Wood US Bureau of Reclamation, Department of Interior, Nevada, USA

5th International Itasca Symposium – Vienna, Austria – 20 February 2020


Contents

- I. Context
- II. Project background and objectives
- III. Numerical model
- IV. Model calibration and validation
- V. Model predictions
- VI. Conclusions

Context

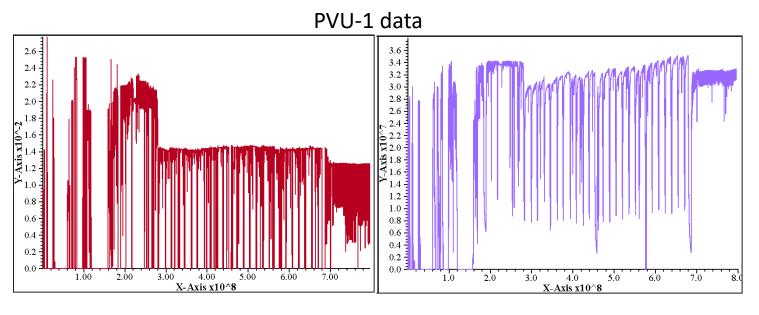
Paradox Valley desalinization project

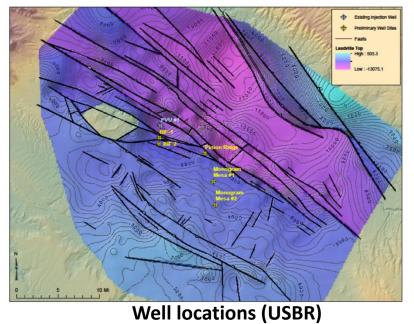
330px-Paradox_Valley_NASA.jpg

Caused by salt fault collapse

Valley

Dolores River


Brine injection at depth


ITASCA

Project background

- Existing PVU-1 well with 25 years history of brine reinjection
- Injection in Leadville: ~ 4.8 km depth, <20md, 7,000 barrels per day (719 l/min)
- Induced seismicity

Evaluation of five potential well sites for additional injection

Injection rate [m^3/sec] vs time [sec]

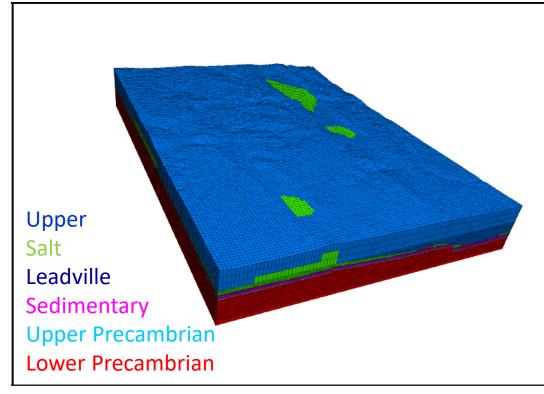
ITASCA[™]

Wellhead pressure [Pa] vs time [sec]

Project objectives

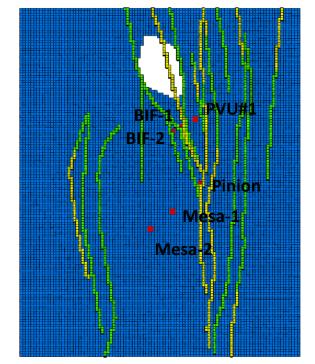
Appraise and rank, using numerical simulations, five potential well sites : BIF-1, BIF-2, Mesa-1, Mesa-2, Pinion Ridge.

Q = 0.0112 m³/s used to resume injection in PVU-1 Q = 0.0151 m³/s used in 5 additional wells


Three criteria for appraisal set by USBR at 50 years of injection:

- 1. Potential for simulated wellhead pressure to reach a critical Target pressure
- 2. Potential for surface heave
- 3. Risk of induced seismicity in the injection layer (Leadville)
 - ... based on elastic stress state in the model (USBR) Quantified using FoS index with respect to fluid pressure FoS < 1 indicates possible yield in Leadville

FLAC3D model


6 Layer model + Welds + Faults

40 km x 56 km x 7.5 km 616,000 zones – 640,845 nodes

ITASCA

Faults and well location in FLAC3D model

Leadville background – Impermeable Faults in yellow

Formation Properties (USBR)

Layer	1	2	3	4	5	6
Layer description	Formations above salt	Salt	Leadville	Sedimentary layers below Leadville	Precambrian	Lower Precambrian
Density	2.53 g/cm ³	2.16 g/cm ³	2.69 g/cm ³	2.56 g/cm ³	2.65 g/cm ³	2.65 g/cm ³
Bulk modulus	29.8 GPa	25.3 GPa	64.8 GPa	50.6 GPa	50.1 GPa	50.1 GPa
Young's modulus	43.1 GPa	35.8 GPa	76.2 GPa	66.8 GPa	83.0 GPa	83.0 GPa
Shear modulus	17.1 GPa	14.2 Gpa	29.2 GPa	26.1 GPa	33.9 GPa	33.9 GPa
Poisson's ratio	0.260	0.264	0.304	0.280	0.224	0.224
Permeability	0.1 mD	0 mD	6 mD	0.1 mD	1.5 mD	0 mD
Porosity	0.06	0	0.05	0.01	0.03	0
Diffusivity (before 1/8/02)	0.0019 m²/s	0 m²/s	0.20 m ² /s	0.0043 m ² /s	0.051 m²/s	0 m²/s
Diffusivity (after 1/8/02)	0.0020 m²/s	0 m²/s	0.21 m²/s	0.0044 m ² /s	0.053 m²/s	0 m²/s

Workflow

1. Flow model calibration and validation – PVU-1

 Preliminary calibration of reference permeability model using 25y of wellhead pressure data

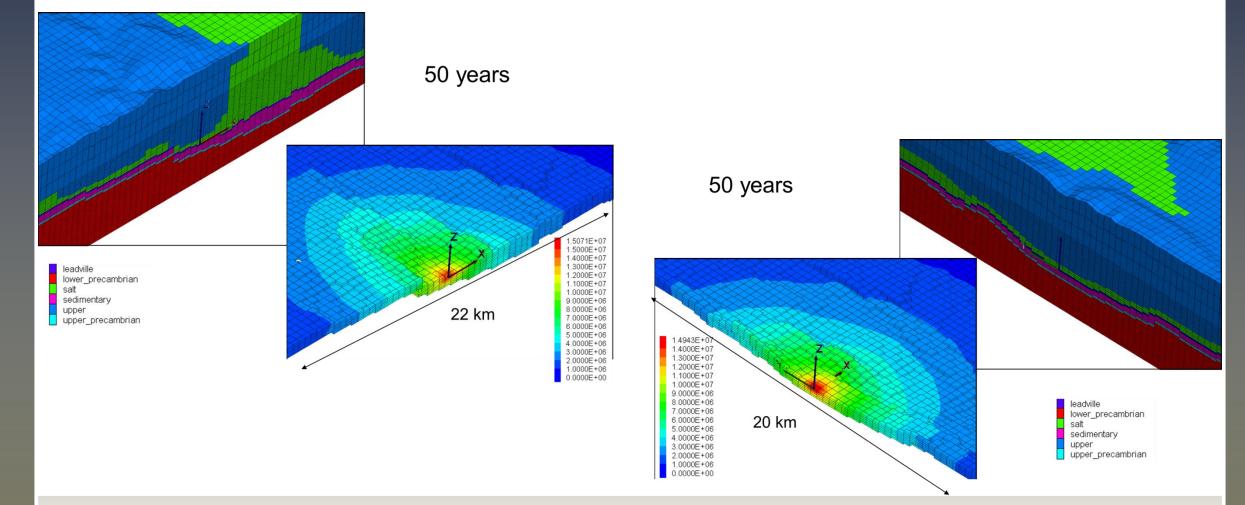
Calibration parameter: coefficient of well pressure correction

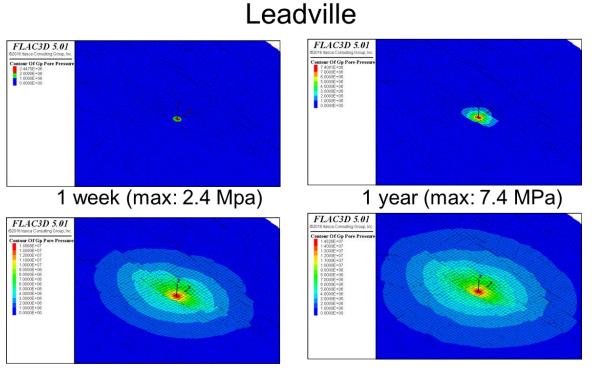
(applied to account for large zone size compared to well diameter)

- Reference model used to test permeability hypotheses
- Permeability model selection and recalibration

2. Model predictions

- at PVU and 5 potential wells
- for up to 50 years of injection
- a) Fluid flow only : Comparison of Well-head pressure with target value
- b) Fluid-mechanical coupling: Surface heave


Potential for slip


MODEL CALIBRATION AND VALIDATION – PVU-1

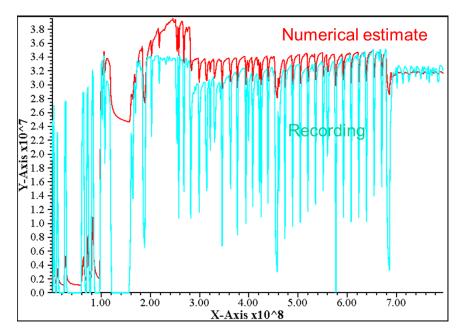
Stratigraphy & induced fluid pressure in Leadville

Evolution of induced pressure

20 years (max 13.9 Mpa)

Induced fluid pressure contours in the Leadville

Permeability models- PVU-1

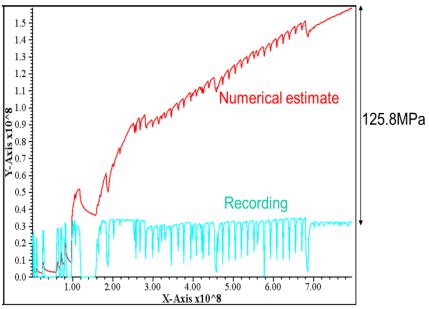


Permeable	Model 1	Model 2	Model 3	Model 4	Model 5
Upper			yes	yes	yes
Salt					
Welds				yes	yes
Leadville	yes	yes	yes	yes	yes
Sedimentary	yes		yes	yes	yes
Upper-precamb	yes		yes	yes	yes
Lower-precamb					
Imperm. Faults		all			some

Model 1

Three permeable layers: L-S-U

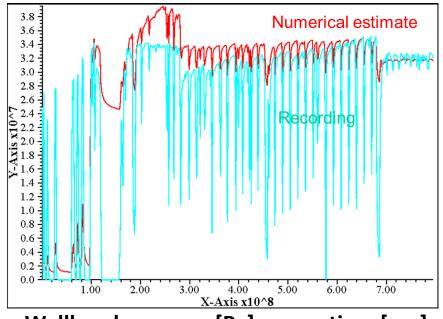
Upper Salt Leadville Sedimentary Upper Precambrian Lower Precambrian


Wellhead pressure [Pa] versus time [sec]

Reference case

Model 2 - Model 3

Permeable L + Imperm. Faults

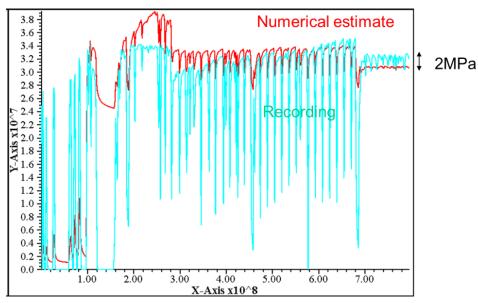


Wellhead pressure [Pa] versus time [sec]

Rejected

ITASCA[™]

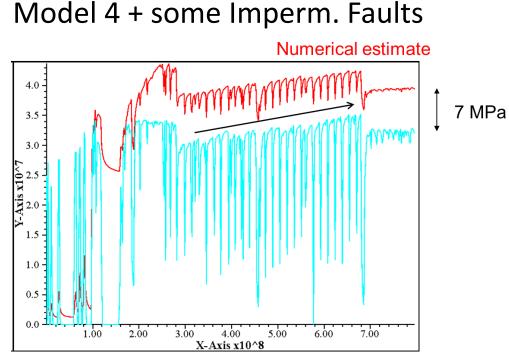
Model 1 + Permeable Upper


Wellhead pressure [Pa] versus time [sec]

Similar to Model 1

14

Model 4 - Model 5


Model 3 + Permeable welds

Wellhead pressure [Pa] versus time [sec]

Cannot be discounted

ITASCA[™]

Wellhead pressure [Pa] versus time [sec]

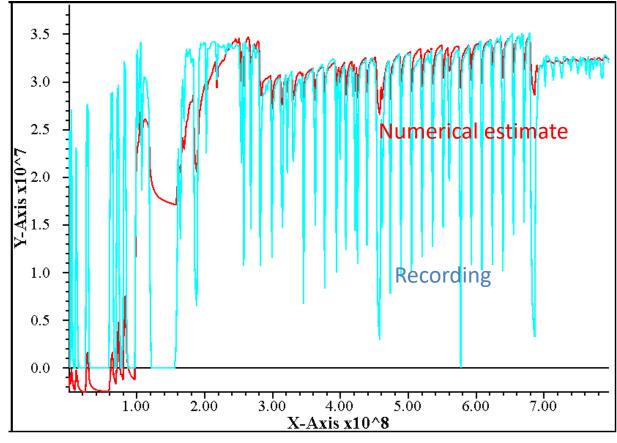
Good trend – recalibration needed

Outcome

- 1. Model 5 is selected
 - 4 permeable layers + welds
 - Faults with large vertical offset (>152m), impermeable
- 2. Recalibration:

PVU-1 location

$$p_{wh} = p_{induced} + p_{correction} + p_{insitu} - p_{brine}$$

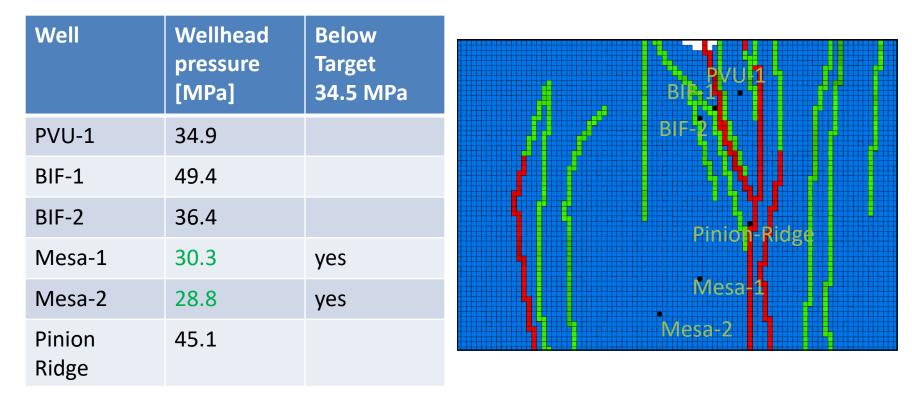

$$\downarrow$$

$$\beta = 0.78$$

(diversion from radial flow in Leadville)

Recalibration results – PVU-1

Wellhead pressure [Pa] versus time [sec]



MODEL PREDICTIONS PVU-1, BIF-1, BIF-2, MESA-1, MESA-2, PINION RIDGE

Site appraisal – criteria 1

Wellhead pressure below target -50 year results

Note: Mesa-1 and Mesa-2 are shallowest injection sites (~3.7 km)

Site appraisal – criteria 2

Surface heave -50 year results

	Maximum ł [cm]	ieave	
	Alpha = 1	Alpha < 1 (*)	BIP-1 ·
PVU-1	7.89	4.94	BIF-2
BIF-1	5.31	3.39	
BIF-2	5.64	3.60	Pinion-Ridge
Mesa-1	8.60	5.50	
Mesa-2	6.58	4.21	Mesa-1
Pinion Ridge	14.65	9.39	Mesa-2

Lowest potential for surface heave: BIF-1 and BIF-2

(*) α = 0.65 Upper, Welds, Sedimentary, Upper-Prec.

= 0.55 Leadville

Site appraisal – criteria 3

Risk of induced seismicity in Leadville - 50 year results

	Minimum FoS - with respect to fluid pressure	
	Alpha = 1	Alpha < 1
PVU-1	0.845	0.774
BIF-1	0.866	0.780
BIF-2	0.946	0.869
Mesa-1	0.975	0.967
Mesa-2	0.910	0.832
Pinion Ridge	0.989	0.885

Lowest potential for slip: Pinion Ridge and Mesa-1

Notes: Potential for slip in well vicinity not captured at the model discretization scale No preferential coulomb properties along faults

CONCLUSIONS

Summary of model predictions

Well locations, in predicted order of increasing potential for:

A single site does not fill all criteria PVU-1 (between impermeable faults) has worst potential for slip

(*) measured by the minimum FoS Index in Leadville

(**) measured by the maximum surface heave in the model

ITASCA[™]

THANK YOU!