NON-LINEAR STRANINING OF FOUNDATION SOILS IN THE PROGRESSIVE FAILURE OF THE MOUNT POLLEY TSF EMBANKMENT

E. Zabolotnii, R.N. Morgenstern and G.W. Wilson

Static 3D analysis: $FOS = 1 @ s_{u,residual}$

DSS-derived strain-weakening curves:

The UPPER GLU

From lab tests: >60% shear strains = full weakening

In a 2m layer, this suggests shear displacements of 1.2 m before collapse if straining is uniform

• From field observation: no such deformations happened pre-collapse

GEOMETRY OF FAILURE

Incremental horizontal displacements during collapse

- 0 < shear band ≤ 12cm
- distinctly asynchronous shear strength mobilization

Upper GLU's CONSTITUTIVE MODEL

MODEL RESPONSE TO LOADING IN THE FINAL CONSTRUCTION STAGE (9B)

using the most conservative interpretation of the strain-weakening curve in the Upper GLU

Step (from start of mech. calcs in stage 9B)

2014 - END OF COLLAPSE SIMULATION

- The correct replication of failure in our finest mesh model can be a result of either:
 - (a) Correct shear band thickness (12cm) combined with a correct choice of strain-weakening curve
 - (b) Excessive shear band thickness combined with an overly conservative choice of strain-weakening curve

- Further mesh refinement computationally unfeasible
 - Conduct a LOWER LIMIT STATE analysis:
 - If mesh could be discretized indefinitely, zone height → zero
 - Such zones, if prone to strain-weakening, would become fully weakened at zero plastic shear displacements
 - Apply "instant weakening" model to regular mesh to simulate "zero thickness" shear band

LOWER LIMIT STATE

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1000

2000

Step (from start of mech. calcs in stage 9B)

3000

4000

Average force-ratio (-)

Early collapse in stage 9A (2013)

LOWER LIMIT STATE ANALYSIS Mechanical Ratio-Average vs. Calculation Step in Stage 9A (2013)

From scale effects: shear band no thicker than 12.5cm

From analysis of lower limit state: : shear band > 0

ACKNOWLEDGMENTS

We are grateful to Itasca and its Educational Partnership for providing us, free of charge, with FLAC3D software used to complete the study of progressive failure at the Mount Polley TSF

A special thank you goes to **Augusto Lucarelli** for his mentorship through the more challenging modelling aspects of this problem

PHOTO CREDITS

Slide 1, 2: Aerial diagonal photo of the Mount Polley mine site by Jamie Heath of Terrasaurus Aerial Photography Ltd, <u>www.terrasaurus.ca</u>, taken on 5 August 2014, reproduced with permission from author.

Slide 7: A view of the failure at the Mount Polley TSF. Reproduced from IRP 2015, Figure 5.1.6 with permission from the Government of British Columbia, copyright permission order #7200003732

Slide 17: A sample of undisturbed Upper GLU material from outside the failure zone. Reproduced from IRP 2015, Figure 5.2.8 with permission from the Government of British Columbia, copyright permission order #7200003732