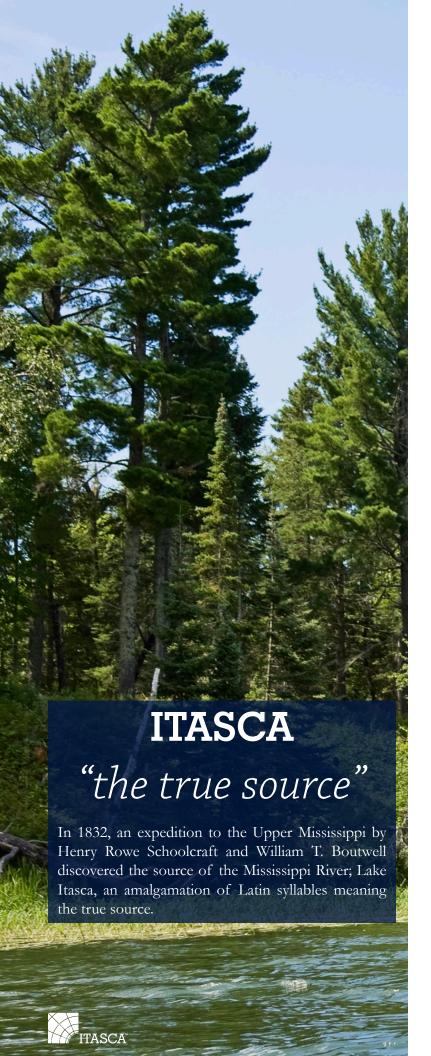


Mass Mining Services and Statement of Qualifications

CG21-SOQ-MASS

"Forward thinking engineering and science"

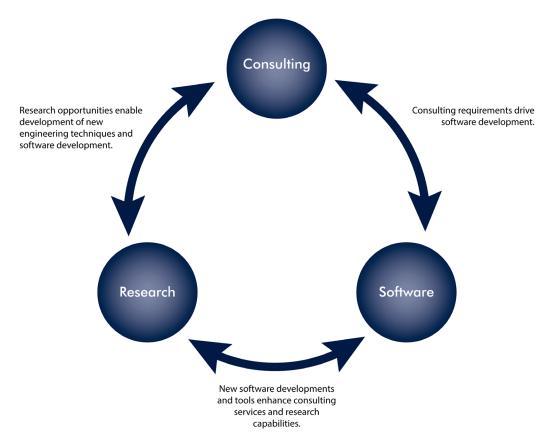
Copyright ©2021 Itasca International Inc. All rights reserved.


The information contained in this document is for informational purposes only and should not be interpreted to be a guarantee or commitment on the part of Itasca. Itasca cannot certify the accuracy of any information presented after the date of publication. Product and company names other than Itasca mentioned herein may be the trademarks of their respective owners.

CONTENTS

ITASCA INTERNATIONAL	1
MINING SERVICES	5
Structural Geology and Rock Mass Characterization	6
Mining Method Selection	7
Stope Design	8
Backfill Design	8
Infrastructure Design	9
Surface Subsidence Evaluation	10
Ground Support Design	10
Slope Stability and Design of Pit Slopes	11
Blast Design	13
Model Work Flow	14
CAVING EXPERIENCE	15
Fragmentation	17
Caving and Subsidence	19
Draw Control, Flow and Recovery	21
Infrastructure Stability	23
HYDROGEOLOGY	25
MICROSEISMIC ANALYSIS	27
SOFTWARE	29
LEAD PERSONNEL, CAVE MINING	33

ITASCA INTERNATIONAL


Itasca International Inc. is an engineering consulting and software development company founded in Minneapolis, Minnesota, with 10 main offices worldwide. Itasca specializes in solving complex geomechanical, hydrogeological and microseismic issues in mining, civil, oil & gas, energy and manufacturing. Itasca works directly with industry, government, research and education institutions and as a specialist to other consulting engineering firms.

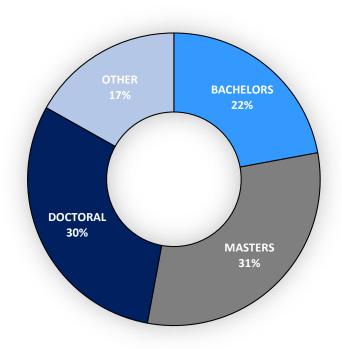
Founded in 1981, Itasca has gained practical and technical knowledge of world-class mining challenges and solutions. Itasca is staffed by leading engineers in the fields of rock mechanics, hydrology, hydrogeology, geochemistry, mining engineering and software engineering. Our experienced staff work on projects ranging from practical field solutions to design issues to applications of Itasca modeling tools for solving difficult or unusual problems, including a wide range of mining methods (from large open pits to deep underground operations) and materials (from soil and engineered materials to soft and hard rock).

Itasca understands the logistical constraints that often are encountered in solving engineering problems. Therefore, we believe in using the most appropriate levels and methods of engineering investigation that examine both technical and economic factors, in order to provide practical solutions using the most suitable and best-available technology.

Use of numerical simulation software is an integral part of our consulting. Our state-of-the-art numerical modeling programs are among the most widely used and respected tools of their kind. Development of our advanced numerical simulation software sets Itasca apart from other geotechnical and mining consulting firms. Itasca benefits from the dynamic interplay between our consulting, software development and contract research activities.

Our software is developed and proven with real-world problem solving driven by our consulting work.

Itasca's consulting and research evolves our software, which in-turn provides more advanced tools for us to use towards solving complex problems for our clients.


Our engineers and software developers have a proven track record of innovation, leading to new strategies and tools to better understand the complex environments in which mines exist.

With a large portion of our engineers possessing advanced degrees and mining experience, Itasca has been selected as the lead research group for three important mining consortia:

- Large Open Pit (LOP);
- Mass Mining Technology (MMT); and
- Hybrid Stress Blast Model (HSBM).

Each of these projects brought together international mining companies who pooled their resources to tackle problems of common interest.

Itasca also fosters education and university research world-wide though the Itasca Education Program (IEP) and Itasca Teaching Program (ITP), which offer our software free to qualified students and lecturers.

In addition to practical experience, two-thirds of Itasca personnel have advanced degrees in engineering, science or computer programming.

Itasca Offices

NORTH AMERICA

Itasca Consulting Canada, Inc.

888 Regent St., Suite 205 Sudbury, Ontario P3E 6C6 Canada T. (+1) 705- 522-2697 F. (+1) 705-522-6564 itasca@itasca.ca www.itasca.ca

Itasca Consulting Group, Inc.

111 Third Avenue South, Suite 450 Minneapolis, Minnesota 55401 USA

T. (+1) 612 371-4711 F. (+1) 612 371-4717 info@itascacg.com www.itascacg.com

Itasca Denver, Inc.

143 Union Boulevard, Suite 525 Lakewood, Colorado 80228

T. (+1) 303 969-8033 itasca@itascadenver.com www.itascadenver.com

SOUTH AMERICA

Itasca Perú S.A.C.

Calle Dos de Mayo Nº 534, Of. 603 Miraflores, Lima 18 Lima, Perú T. (+51-1) 445-9608 itascaperu@itasca.pe www.itasca.pe

Itasca Chile SpA

Av. Pedro de Valdivia 291, Segundo Piso, Providencia C.P. 7500524 Santiago, Chile T. (+56-2) 2434-1300 itascachile@itasca.cl www.itasca.cl

ASIA

HydroChina - Itasca R&D Center

No. 201 Gaojiao Road Yuhang District Hangzhou City Zhejiang Sheng 311122, China T. (+86-571) 5662-5702 F. (+86-571) 5662-5703 itasca@itasca.cc www.itasca.cc

EUROPE

Itasca Consultants AB Luleå Office (main)

Aurorum 2 977 75 Luleå, Sweden T. +46 (0)76 768 22 55 jonny@itasca.se www.itasca.se

Stockholm Office

Isafjordsgatan 39B Kista, Sweden www.itasca.se

Itasca Consultants S.A.S.

Centre Scientifique A. Moiroux 64 Chemin des Mouilles 69134 Ecully Cedex France T. (+33) 4-72-18-04-20

itasca@itasca.fr www.itasca.fr

Itasca Consultants GmbH

Leithestrasse 111a 45886 Gelsenkirchen Germany

T. (+49) 209 147-5630 info@itasca.de www.itasca.de

AUSTRALIA

Itasca Australia Pty Ltd. Melbourne Office (main)

106A South Parade, Blackburn Melbourne VIC 3130. Australia

T. (+61) 3 9894 1141 itasca@itasca.com.au www.itasca.com.au

Brisbane Office

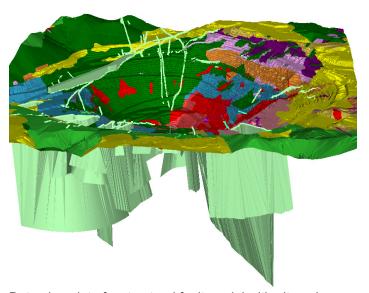
Level 5, Toowong Towers 9 Sherwood Rd. Toowong QLD 4066 Australia T. (+61) 7 3310 8810

itasca@itasca.com.au www.itasca.com.au

10 main consulting offices in 9 countries, and software agents based in another 11 countries, focused on servicing the global mining, civil, and energy industries.

MINING SERVICES

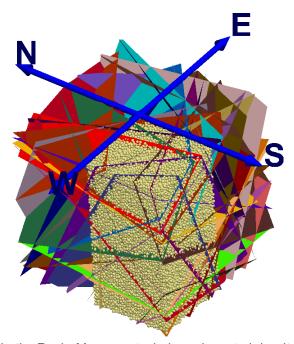
Itasca's global experience and expertise in geomechanics, hydrogeology and microseismics are employed by our clients to select the mining method, sequence and ground support that will maximize ore recovery, excavation stability and operational safety while minimizing development costs and maximizing ore recovery.


Itasca has analyzed the behavior of excavations in all types of rock and at all scales, from individual boreholes and access tunnels to the complete sequencing of the largest underground mines and deepest open pit mines in the world. Individual projects often require analyses over a wide range of scales due to the complex interaction between the overall mine advance, in-situ stresses and the loading conditions experienced on the scale of critical infrastructure.

Itasca is a recognized leader worldwide in geomechanical numerical modeling of complex mining environments. While this remains our core focus, Itasca's capabilities extend beyond this as a complete mining engineering service provider as shown in the next sections.

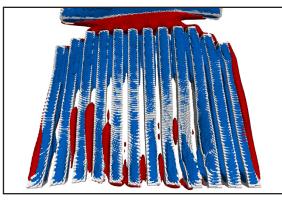
Structural Geology and Rock Mass Characterization

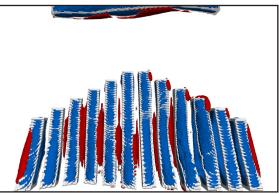
In order to develop a robust structural geology model, Itasca assesses the existing data in collaboration with our clients to assess any gaps and then applies a number of techniques as appropriate. These can include lineament analysis, precise structural mapping (outcrop, open pit and underground), drill core logging, televiewer analysis and stereophotos.


Datamine plot of a structural fault model with pit geology.

Rock mass strength estimation is required in order to predict the excavation response at the mine site. Obtaining accurate rock mass strengths requires an understanding of the intact rock and joint properties of each geotechnical unit and the in-situ stress state. Itasca can facilitate, interpret and apply both field/laboratory strength testing and in-situ stress measurements. We use traditional engineering approaches including mechanical, empirical and numerical to estimate rock mass strengths; and have pioneered innovative numerical techniques such as Synthetic Rock Mass (SRM) simulations. This approach allows our consultants to model rock mass behavior for any given range of anisotropies, scales, properties and conditions, giving Itasca an understanding of the rock mass that is second-to-none.

Although Itasca has a reputation for numerical modeling, our consultants are out in the field every day assessing site conditions and characterizing the structural geology and rock mass data crucial for good engineering solutions.

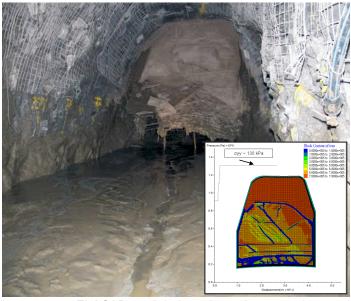

Synthetic Rock Mass, a technique invented by Itasca, consists of simulated joint sets embedded in intact rock with properties calibrated to match observed behaviors.



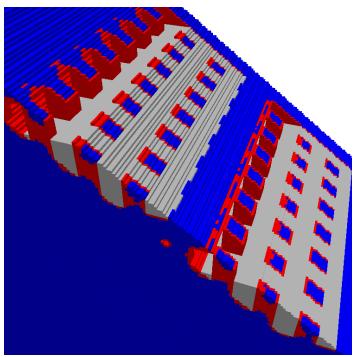


Mining Method Selection

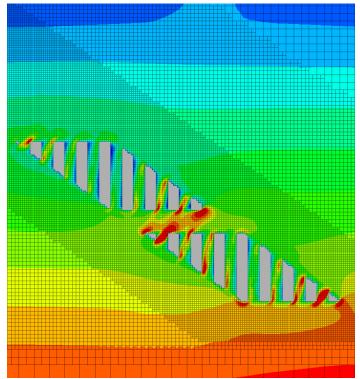
Combining our experience, conventional approaches and numerical modeling tools, Itasca is able to simulate mining of our client's sites first, so as to select mining methods appropriate to the orebody geometry and rock mass strength conditions. Itasca understands the economics involved in any mine design and ensures that mineral recovery is optimized while maximizing excavation stability. Using our suite of modeling software, Itasca can implement any number of mining methods with a range of property, economic and site condition sensitivities to virtually excavate the mine. Designs, properties and conditions can be revised readily over time using the best information available.


Pyramid mining sequence of a panel showing mining-induced stress changes around the advancing stopes. A concentration of stress in the sill pillar between panels can be seen.

Stope Design

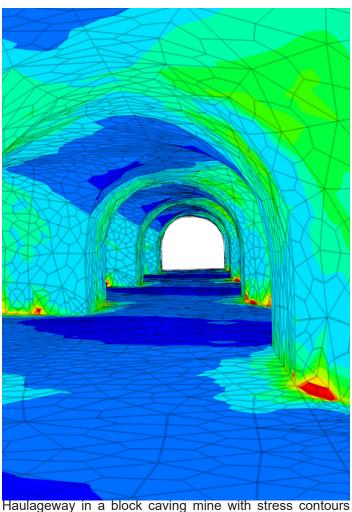

Itasca regularly performs evaluations and designs for long-hole, cut-and-fill, room-and-pillar, longwall and solution stopes. As with all our work, our engineers combine a practical engineering approach with numerical modeling technologies where appropriate. Itasca's software is particularly good at representing the stress-strain response of intact, blocky or bedded materials exhibiting plastic, brittle and creep behaviors over all scales of mining; thus, any combination of mine geology can be simulated.

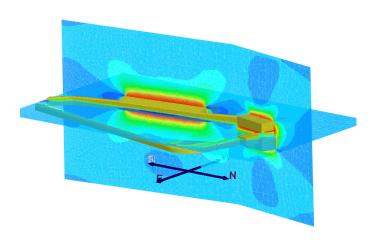
Backfill Design


Itasca offers services in backfill characterization, specification, design of backfill mixing and delivery systems, stability analysis (exposure stability, reinforcement and closure resistance), dynamic modeling to examine stability and liquefaction potential under rockburst and rockfall conditions, and instrumentation and testing of placed backfill. These services cover a wide range of backfill products (paste fills, hydraulic fill, cemented aggregate fill and rockfill) and have been applied to mining operations throughout the world. Itasca also has developed specialized methods for simulation of the deformation and yielding of backfill, bulkheads and backfill mats.

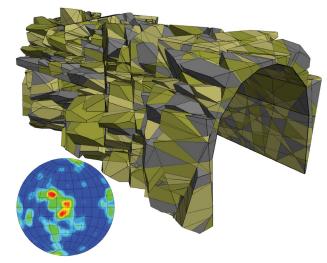
Itasca uses *FLAC3D* models in order to better understand and improve backfill barricade designs.

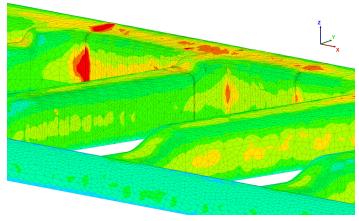
Step room-and-pillar stope sequence with fill (gray) is used to optimize pillar and room dimensions.


Section view through orebody with backfilled stopes showing the predicted ground stress response to a particular mining method, sequence and stope design.


Infrastructure Design

Robust designs for critical infrastructure (access and ventilation shafts, crusher stations, haulage drifts, etc.) are essential to ensure the long-term stability, mine viability and safety of personnel. Once the location, orientation and geometry of an excavation have been designed, long-term considerations such as the impact of future adjacent excavations on stability must be considered.


A number of design issues require consideration when developing infrastructure in rock or soil that impact an excavation's long-term stability: in-situ and mining induced stress, geologic structures and other intersecting developments can be assessed by Itasca in order to compensate the design as necessary. We perform complete analyses using the most appropriate empirical, analytic and numerical tools available.

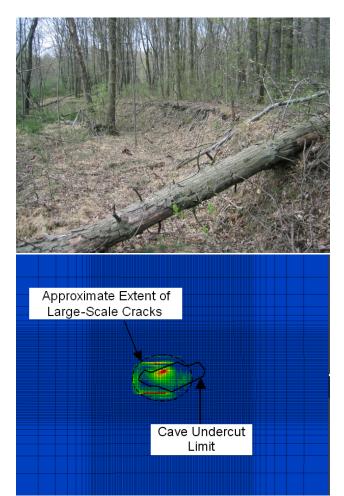

Haulageway in a block caving mine with stress contours shown.

Stress plots along several cut-planes suggest very little interaction would be expected between two large underground caverns constructed in close proximity.

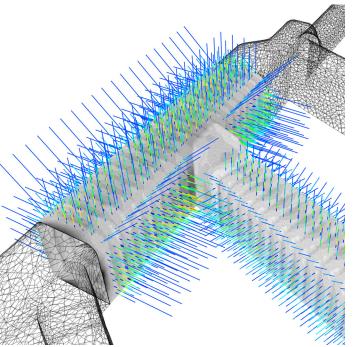
By simulating all of the wedges surrounding a horseshoe tunnel using multiple DFN realizations, block size and ground support can be estimated to minimize stability risks for critical openings.

Stresses at the junction, walls and back of several mining bays in close proximity permit offset and support needs to be estimated prior to development.

Surface Subsidence Evaluation


Surface subsidence is often an inevitable consequence of many mining methods. Itasca evaluates mining-induced subsidence related to the extraction of ore from both underground and open pit mines, together with dewatering-induced subsidence. We provide services ranging from field investigation for acquiring geomechanical and hydrogeological properties to subsidence back-analysis, to prediction of the magnitude and extent of subsidence related to a particular mine design in order to optimize location of infrastructure and understand any impacts on existing property and the surface environment.

Traditionally, empirical and analytical methods have been used to assess the limits of subsidence from underground mining. However, these methods generally are restricted to simplified, regular mining geometries and often limited to two-dimensional problem geometries.

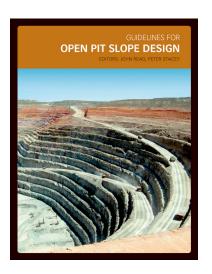

Itasca engineers have performed more threedimensional assessments of mining-induced subsidence than any other group. Through the calibration of observed and measured subsidence features at a number of operating and abandoned mine sites, we have developed a rigorous methodology that predicts the limits of large-scale surface cracking and ground strains capable of causing damage to surface infrastructure.

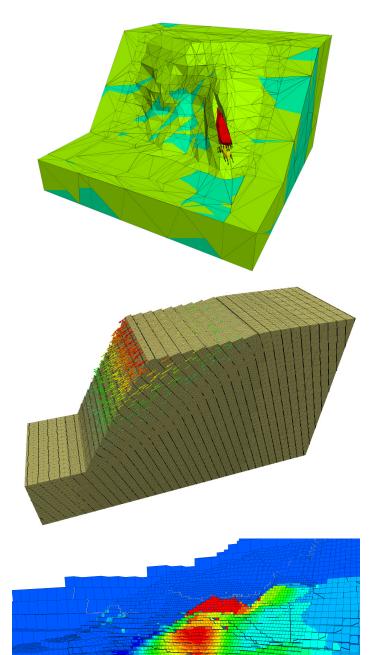
Ground Support Design

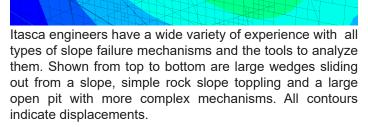
Itasca designs the ground support layout and specification necessary to reinforce, retain and hold the rock mass around excavations. We design ground support using a combination of engineering tools such as Ground Reaction Curves and practical numerical modeling tools based on instrumentation data where available. Ground support elements (rock bolts, cables, liners, etc.) are an integral component of much of Itasca's software. We also design instrumentation programs to validate and subsequently monitor the support design over the life of the excavation.

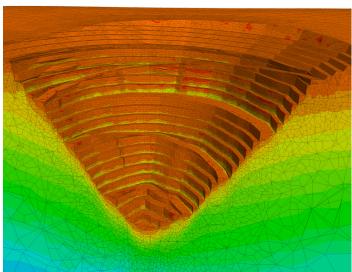
A back-analysis of the closed Grace cave mine shows excellent agreement with the observed actual extent of surface subsidence.

Evaluation of an underground cable bolt and shotcrete support design. Loads acting axially along the cables are indicated.

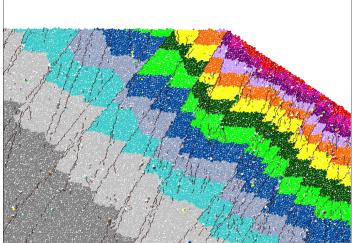



Slope Stability and Design of Pit Slopes


Itasca specializes in the assessment of slope stability and design of pit slopes on bench, inter-ramp and global mine scales. Itasca performs slope, instrumentation and remediation design at some of the world's largest open pit mines. We also analyze the static and dynamic stability of waste dumps, leach piles and tailings dams.

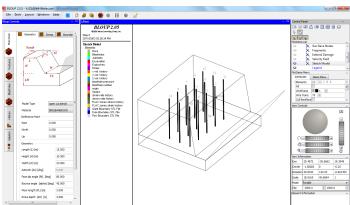

Itasca is particularly well-known for examining difficult problems involving slope instabilities and remediation methods. Itasca pioneered the use of accurate and efficient methods to determine safety factors using numerical methods that use the shear-strength reduction technique, which allows failure surfaces to develop naturally; an important advantage over more traditional limit-equilibrium solutions that are restricted to prescribed failure surface geometries. Currently, a vast majority of work involves three-dimensional analysis. We have found that three-dimensional analysis provides a much more realistic simulation of actual slope behavior in many cases. We have worked with our software developers to significantly reduce the run-times that have traditionally impeded 3D analysis.

Itasca is the lead researcher for the Large Open Pit (LOP) project and has been instrumental in the publication of **Guidelines for Open Pit Slope Design**, a comprehensive and modern reference for the best-practices slope design processes and tools that are available for mine design. (Click on the cover image below for more information.)



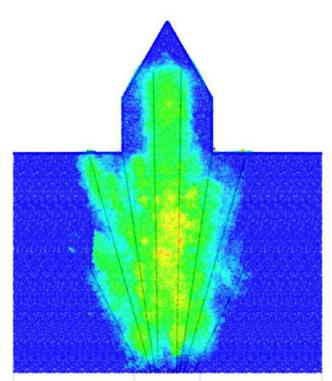
Cut through open pit showing a new stress state due to mining.

One of Itasca's first applications of SRM was a challenge by the LOP project to model an open pit based on a the rock mass properties and the mining sequence. This *PFC2D* model correctly predicted the dominant failure mechanism (toppling and rock sliding) experienced at the mine site, Chuquicamata. Colors and dark lines indicate horizontal displacements and joints opening up or undergoing shear.



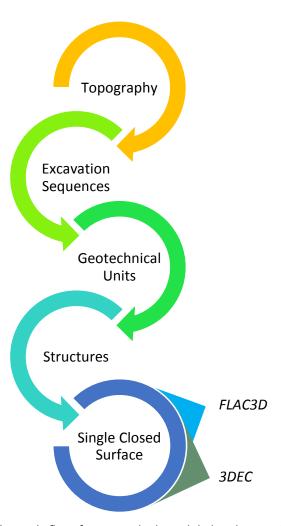
Blast Design

Itasca provides consulting services for:


- Drilling and blasting engineering;
- Stope surface and pit wall design;
- Blast optimization:
 - Fragmentation;
 - Muckpile profile;
 - Throw; and
 - Vibrations;
 - Wall control; and
- Large-scale destress blasting.
- Design monitoring systems, so that performance can be assessed and optimized.

In addition to conventional analytical and empirical methods, Itasca has developed proprietary tools for blast analysis as part of the HSBM consortium that can be used to understand blasthole-to-blasthole interaction, optimize fragmentation and throw, and minimize undesirable damage (e.g., smooth blasting for wall control). This unique blasting simulator is capable of modeling a variety of geometries. Blasthole patterns and explosives loading may be defined individually or as groups (patterns). *Blo-Up* simulation results include final muckpile profile, fragment velocities, blasthole gas pressure and fragmentation and material distributions. Although *Blo-Up* is not available commercially, Itasca does use it in consulting work.

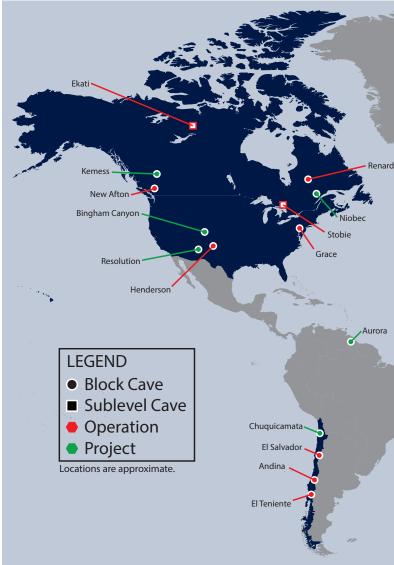
Blo-Up simulates explosive detonation, dynamic shock wave propagation and interaction, rock fragmentation and muck pile formation.

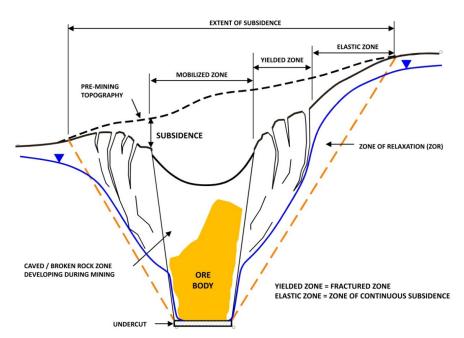

Blo-Up simulation showing a section though a 3D bench and subsequent muck pile.

A sublevel caving (SLC) module has been added to *Blo-Up* for ring blasting simulation.

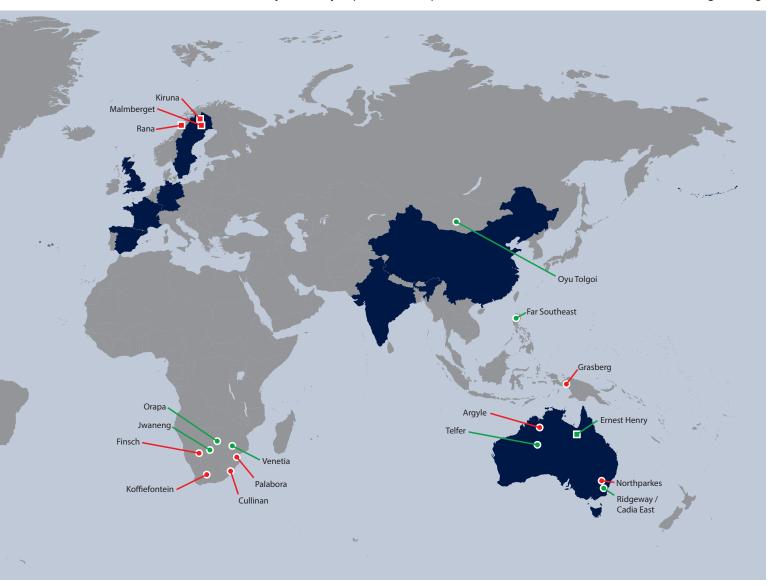
Model Work Flow

Based on decades of experience using and developing numerical tools, Itasca has developed a rigorous and efficient work-flow for addressing sophisticated geomechanical and hydrogeological problems. This process allows our consultants to bring all of the necessary information from a variety of mine planning and CAD software together as a single closed surface. From this point, we can generate any number of complex *FLAC3D* and *3DEC* models rapidly, flexibly and reliably. Soon, Itasca plans to expand this technology to include *PFC* and other proprietary 3D software.


Itasca's work flow for numerical model development is a process of unifying all relevant information into a single, well-defined closed surface. Multiple geomechanical models can be rapidly prototyped.


CAVING EXPERIENCE

Itasca has been at the forefront of cave mining geomechanics for more than 20 years, pioneering the development of a number of industry leading tools for the analysis of caving, subsidence, fragmentation, flow, infrastructure stability and groundwater inflow. These tools have been applied at more than 30 block, panel and sublevel caving (SLC) operations and projects worldwide, and have been validated through direct comparison of observed and predicted behaviors. Itasca also relies on a number of experiential guidelines and empirical relations for caving that have been developed by Itasca and other experts based on a large number of case histories. Itasca engineers work directly with mining companies and other consultants in all phases of design, ramp-up, operation and closure in order to provide advice and make predictions aimed



at optimizing recovery and managing risk. The tools are designed to employ as much of the existing rock mass data and monitoring data as possible in order to add maximum value to projects and operations.

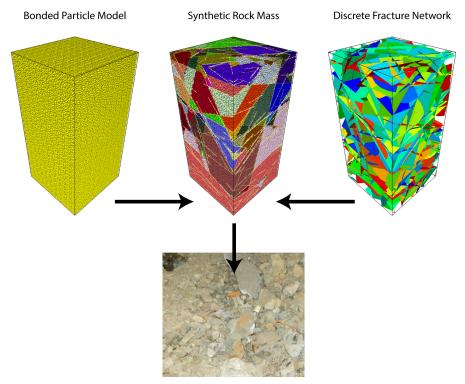
16

With more than 20 years of practical and advanced applications, Itasca designs and analyses every aspect of block, panel and sublevel cave mine mechanics and engineering.

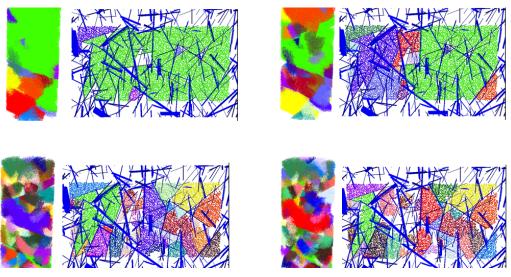
Select caving projects and operations that Itasca has consulted on, ranging from mud-rush potential and orepass stability to caving and fragmentation prediction.

"There is no doubt that the tools assembled in the SRM approach are the most advanced available to us today." Evert Hoek and Derek Martin (2010)

Fragmentation


Fragmentation exerts a significant control on the width of flow zones associated with draw from the cave and must be understood to select a drawpoint spacing that promotes uniform drawdown and optimizes ore recovery. Primary fragmentation (the size of rock blocks produced at the onset of caving) is a key input to forecasting of recovery, dilution, drawpoint availability and secondary breakage requirements. Accurate forecasting of drawpoint availability and fines production from the cave also requires an understanding of secondary fragmentation, the attrition of blocks over time as they move through the cave. Itasca has conducted primary and secondary fragmentation studies at a number of different projects and operations, including Ridgeway Deeps Mine (to understand the impact of cave shape on primary fragmentation) and the Chuquicamata, Kemess and Niobec projects, where veining is expected to exert a significant control on primary fragmentation.

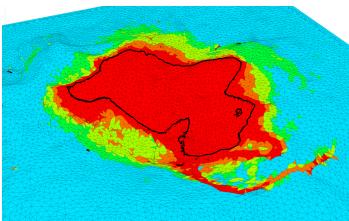
Itasca employs Synthetic Rock Mass (SRM) modeling techniques for primary fragmentation prediction and *REBOP* for secondary fragmentation prediction.


SRM technology was developed as part of the industryfunded Mass Mining Technology (MMT) project and is unique in its capability of explicitly accounting for the impacts of existing fractures (joints or veins), as well as new fracture growth, on fragmentation. In this approach, Discrete Fracture Networks (DFNs) first are developed to describe the in-situ fracture network geometry based on available frequency, orientation and trace length data. The properties of the fractures are established on the basis of laboratory testing and/or empirical relations for stiffness and strength (i.e., based on logged and/or mapped roughness, alteration and waviness). These DFNs are embedded within large-scale (5-20 m), three-dimensional bonded particle/block models of the intact rock (developed with PFC3D and/or 3DEC) and strained to simulate the primary fragmentation process as a function of expected cave back stresses. Results are presented in the form of fragment size and volume distribution plots and three-dimensional block models of expected primary fragmentation.

Primary fragmentation measurements or predictions can be input to *REBOP*, a gravity flow simulator developed by Itasca to predict the flow and drawdown associated with production from hundreds of drawpoints over the life of the mine. Using a user-defined drawpoint layout and production schedule, secondary fragmentation can be predicted as part of a draw simulation with blocks breaking down in the column as a function of stress and strain and the rock block strength.

SELECTED FRAGMENTATION CLIENTS		
Operations	Projects	
El Teniente	Bingham	
Henderson	Chuquicamata	
Northparkes	Kemess	
Palabora	Niobec	
Ridgeway Deeps	Oyu Tolgoi	

Synthetic Rock Mass testing methodology for fragmentation prediction.


Use of Synthetic Rock Mass (SRM) testing to estimate primary fragmentation as a function of evolving cave back stress. The sample (colored by fragment) is shown on the left, while the underlying DFN is shown on the right.

Caving and Subsidence

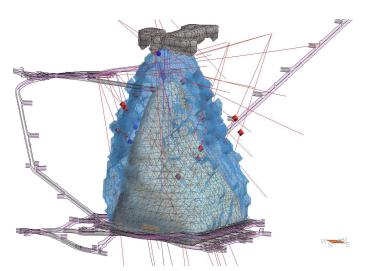
Caving is being applied to increasingly deep, large, strong and heterogeneous orebodies, increasing the risk of ore loss due to unexpected cave shape. In addition, the transition from open pit to cave mining that many companies are contemplating offers challenges in terms of timing and the management of large-scale caving-induced slope collapses. Itasca has pioneered methods for analyzing undercut advance, cave growth and surface impacts under these conditions, providing predictions and analysis of caveability, subsidence (including induced slope failures), cave shape, caving rate, bulking and the potential for hang-ups and airgap development. The results of these studies are used to optimize column height, footprint layout, undercut/draw strategy (including advance direction, lead-lag and undercut shape) and standoff distance for infrastructure and transitioning strategies. When combined with empirical strain-based criteria (e.g., for the limits of observable cracking on surface) and structure-specific criteria (e.g., for cracking of masonry structures), the results of cave-scale modeling can be used to predict the surface expression of the cave (e.g., timing, extent and depth of the crater) and estimate limits of caving-induced subsidence. The predictions obtained from these analyses commonly focus on the location of planned or existing surface infrastructure, such as shafts, process plant, water diversion structures and tailings dams.

Predicted surface expression for a series of caves developed beneath a large open pit, including the crater limit (black line) and zones outlining the expected severity of damage to masonry structures (color contours).

Itasca developed the first numerically based tools for caving prediction in the late 1980s, and these subsequently have been advanced and expanded through application at more than 20 different operations and projects around the world, and through funding provided by the International Caving Study (ICS) and Mass Mining Technology (MMT) projects. Both *FLAC3D* and *3DEC* are used for caving simulation and employ a "caving algorithm" that is production-driven and incorporates material behaviors that are essential to the prediction of rock mass response to undercutting and draw (including cohesion weakening, modulus softening and shear- and tension-induced bulking).

The key inputs to the caving algorithm include rock mass strength, modulus and brittleness estimates from the characterization efforts (e.g., empirical relations and/or SRM testing), in-situ stresses, base-case layouts (footprints) and production schedules (e.g., from *PCBC*). In addition, major structures can be added to the model to account for their impact on cave shape and caving rate.

Caving Commences (Q2, 2002)


Cave Intersects Open Pit (Q2, 2002)

North Wall Fails (Q3, 2004)

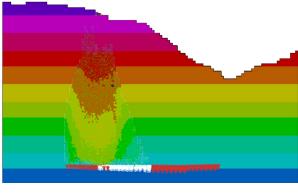
Development of the pit slope failure mechanism at the Palabora mine at various stages of production.

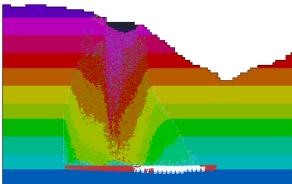
Evolution in the seismogenic, yielded, mobilized and abutment stress zones is tracked as a function of production and are visualized as a series of three-dimensional isosurfaces that can be exported as DXF wireframes for comparison to monitoring data

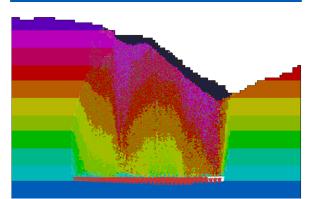
(e.g., microseismic events, TDR breakages, open hole blockages) and other cave operation and management activities.

Result of a cave-scale model indicating predicted extents of yielded zone (blue surface) and mobilized zone (white surface). Open-hole blockages (red diamonds) and Time-Domain Reflectometer (TDR) breakages (blue spheres) correspond well with the leading edge of the predicted yielded zone.

SELECTED CAVING and SUBSIDENCE CLIENTS		
Operations	Projects	
Andina	Bingham	
Argyle	Cadia East	
Cullinan	Chuquicamata	
Ekati	Ernest Henry	
El Salvador	Far South East	
El Teniente	Jwaneng	
Fabian	Kemess	
Finsch	Niobec	
Grace	Orapa	
Henderson	Oyu Tolgoi	
Kapten	Resolution	
Kiruna	Venetia	
Koffiefontein		
New Afton		
Northparkes		
Palabora		
Renard		
Ridgeway Deeps		

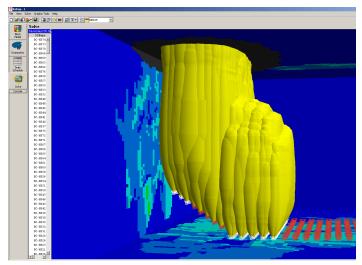



Draw Control, Flow and Recovery

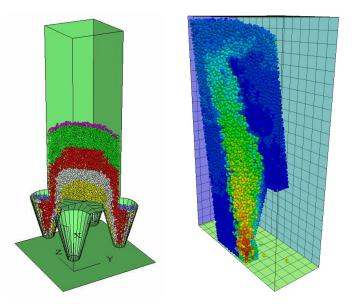

Understanding of how material flows within a cave is required to make appropriate decisions at the design stage (i.e., drawpoint spacing, drawpoint layout, drawbell geometry) and during operation (draw rates, draw ramp-up and scheduling). Draw strategy in particular is the key control that operators use to maximize recovery, minimize dilution and manage hazards associated with caving (hang-ups and mud rush). Itasca has been involved with a number of caving projects and operations worldwide in both the design and operating stages to help with decisions relating to drawpoint spacing and draw scheduling, and to forecast what is likely to be extracted from the cave over the life of the mine. We also have assisted mines with identifying targets for remnant recovery through life-of-mine draw reconstruction and simulation (e.g., Cullinan Mine), and developed mix matrices for incorporation into grade forecasting and draw scheduling software (e.g., Henderson Mine).

Flow analyses are conducted by Itasca using *REBOP*, a tool specifically developed to provide rapid analysis of the movement and extraction of fragmented rock under draw in mine operations that use block, panel or sublevel caving techniques.

SELECTED DRAW CONTROL, FLOW and RECOVERY CLIENTS		
Operations	Projects	
Andina	Niobec	
Argyle	Oyu Tolgoi	
Cullinan	Resolution	
El Teniente	Venetia	
Finsch		
Henderson		
Kiruna		
New Afton		
Northparkes		
Palabora		
Renard		
Ridgeway		
Salvador		



Example of *REBOP* simulation of drawdown (shown in section) associated with the development of a panel cave beneath an open pit over time. Black blocks indicate surface rilling.

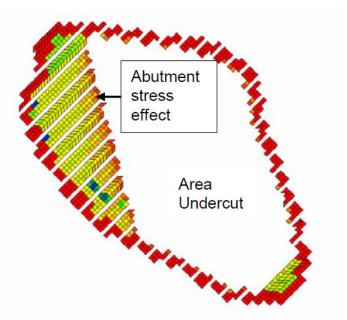

The key inputs to *REBOP* include measurements or predictions of primary fragmentation and evolving cave shape and intact rock strength. The primary output from a draw analysis includes time- or tonnage-based histories of extracted ore grades and other rock properties, plots of material distribution above the drawpoints and three-dimensional visualization of the movement and extraction zones associated with each drawpoint.

In addition, secondary fragmentation, rilling and fines migration all can be accounted for within *REBOP* simulations. The rilling logic and the ability to represent complex surface topography allow simulation of the impacts of local or large-scale failures in overlying open pit slopes or weak overburden. In addition to

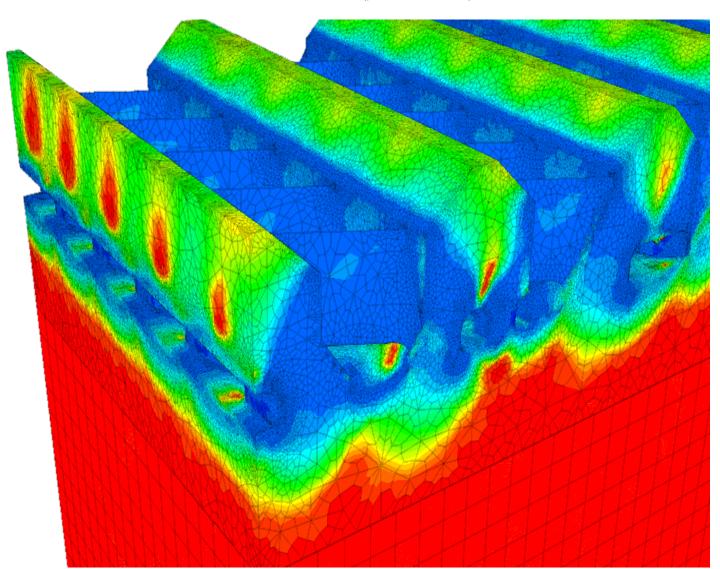
estimating recovery and dilution, the fragmentation exiting drawpoints can be estimated over time to help establish likely drawpoint availability and secondary breakage requirements. In sublevel caves, the percentage of ring ore reporting to different sublevels can be tracked (i.e., primary, secondary, tertiary recovery) and tracer markers can be used to test the code against the results of in-situ marker trials.

REBOP software showing drawpoints and zones of broken rock draw for each.

Block cave drawbells and sublevel cave draw points simulated using *PFC3D*. These types of models were used to investigate draw control and flow mechanics. The knowledge gained by this innovative work has been applied to *REBOP* for more rapid, mine-scale simulations.


Infrastructure Stability

Itasca's expertise in cave mining has been used by companies to make critical decisions regarding the orientation and geometry of the undercut, the layout of the extraction level and the degree of support in access and infrastructure required to ensure worker safety and long-term stability. Itasca is a leader in the design and analysis of undercut- and extraction-level infrastructure for underground block- and panel-cave mining methods. Itasca has conducted investigations of excavation behavior at many of the world's caving mines. Itasca engineers have been successful in optimizing the extraction-level development prior to undercutting, as well as developing sound designs for the level and timing of ground support. Due to the three-dimensional nature of typical undercut- and extraction-level mining geometries and the complex interaction between cave shape, cave growth and abutment stresses, three-dimensional analyses at both the tunnel and cave scales are required to simulate the loading conditions of undercut- and extraction-level drives. Three-dimensional, non-linear analysis of such mining geometries has become routine using FLAC3D and 3DEC.



FLAC3D model of undercut and extraction-level development used to investigate closure strains associated with different undercut strategies.

Itasca software permits careful consideration of the complex stages of loading, unloading and yielding at both the cave and drift scale that occur during undercutting and subsequent cave growth. They offer a means to assess the induced stress changes and potential for yielding around the planned infrastructure including shafts, crusher chambers, extraction-level development and undercut drives. These predictions can be combined with empirical criteria to infer potential for instability and to suggest where more detailed modeling may be required to examine stability further and to test proposed support designs.

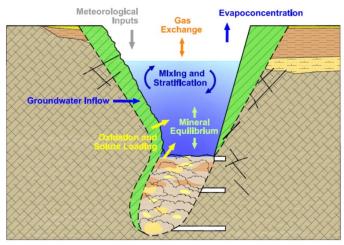
Example of abutment stress analysis in a *FLAC3D* model (plan view section) of an inclined cave.

FLAC3D model showing stresses acting on the undercut level of a proposed block cave layout.

HYDROGEOLOGY

Itasca hydrogeologists have extensive experience in assessing key hydrogeologic issues related to caving projects, including:

- Groundwater inflow to mine workings for determining mine pumping requirements;
- Pore-pressure distributions for assessing underground infrastructure and slope stability;
- Prediction of moisture content for evaluating mud-rush potential; and
- Prediction of water quality for meeting regulatory discharge limits.


In addition to conventional data collection, field investigation and field monitoring, Itasca is unique in that our hydrogeologists and geomechanical engineers work closely together to account for the propagation of caved rock over time in geomechanical models. In doing this, caving can be accounted for in our 3D groundwater flow simulations.

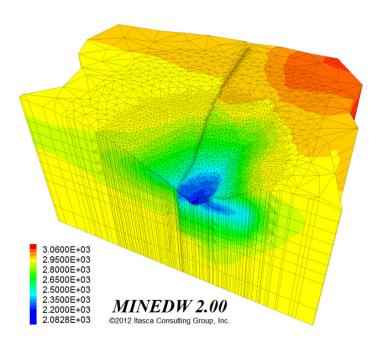
Itasca's models have simulated the temporal propagation of the enhanced permeability efficiently and realistically within the extent of disturbed rock due to caving. Itasca has constructed 3D groundwater flow models to predict both inflow and pore-pressure distribution for a number of open pits transitioning to block or sublevel cave mining and caving projects.

OPERATION	PROJECT
Chuquicamata	Aurora
Ernest Henry	Grasberg
Mina Ministro Hales	
Venetia	

Geochemistry

Itasca geochemists are experienced in predicting the water quality of mine water. Itasca investigates the effects of fine caved materials on the enhanced leaching of chemicals from caved material to groundwater, the water quality of potential pit lakes including open pits or transition from the open pits to underground workings, and the temporal/spatial distribution of key chemical components.

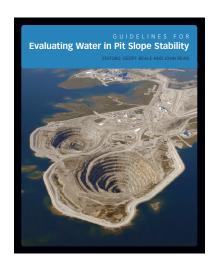
Conceptual model of water quality for open pit/block caving operation.

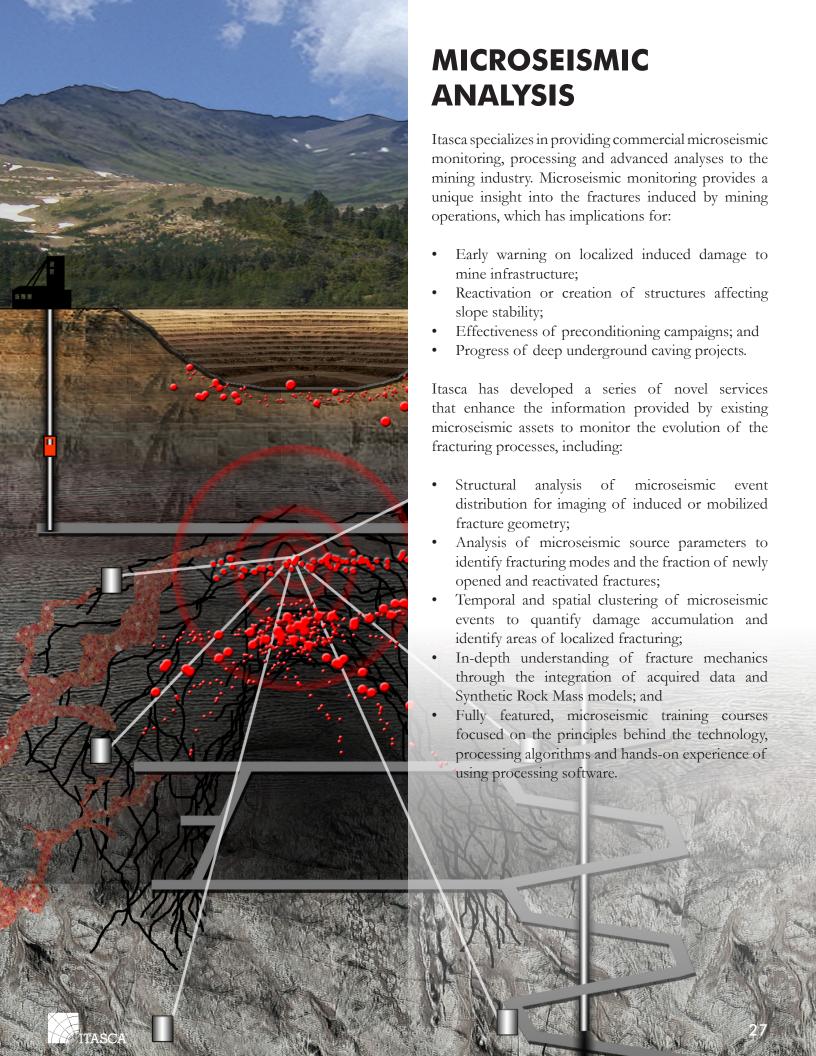

MINEDW

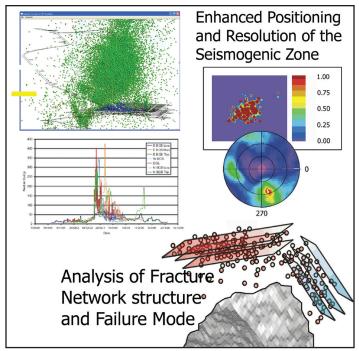
MINEDW is commercially Itasca's available groundwater flow software that is specifically designed simulate complex mining-related groundwater conditions. In contrast to the general industry modeling practice, which requires many intermittent yearly models, MINEDW models are computationally efficient and robust, reducing overall modeling costs and avoiding complex management of modeling files and data. MINEDW 3D groundwater flow models are capable of simulating enhanced permeability around the mine and over the life of the mine using a single transient model simulation. The calculated 2D and 3D pore pressures from MINEDW can be imported seamlessly by Itasca's suite of geomechanical software for use in geomechanical stability analyses requiring a minimal amount of time, on the order of minutes. For example, a Chuquicamata Open Pit and Block Cave groundwater flow model required only one transient simulation to calibrate past open pit operation calibration, starting in 1970, through to the end of block caving. The entire running time for this simulation (on a regular desktop) was less than one day.

Mud-Rushes

Itasca's hydrogeologists have worked jointly with the geomechanics group to study the mud-rush potential of caved material for various caving projects. The predicted inflow from the 3D groundwater flow model, the development of subsidence and surface-water recharge were key input parameters for the mud-rush

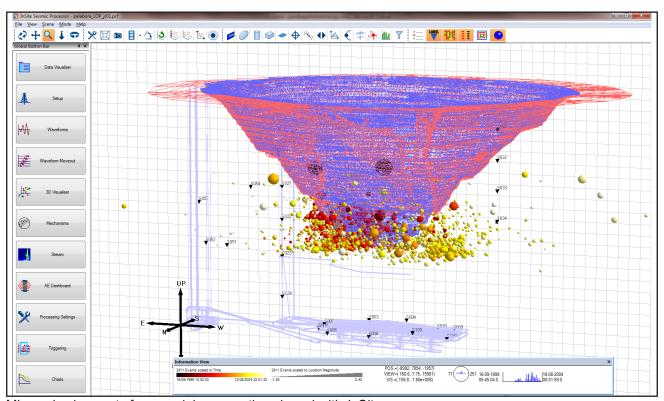

assessment. Itasca used various unsaturated flow codes to predict the moisture contents for the geomechanical group to use as input in their assessment of potential mud-rush occurrences.


MINEDW model plot showing water head around an open pit.


LOP

As part of the Large Open Pit (LOP) project, Itasca has been instrumental in the publication of **Guidelines for Evaluating Water in Pit Slope Stability**, a comprehensive account of the hydrogeological procedures that should be followed when performing open pit slope-stability design analyses. (Click on the cover image below for more information.)

Microseismic analysis.


InSite, Itasca's integrated tool for seismic data acquisition, signal processing and data management and visualization, is independent of the acquisition hardware used at the mine site. It can be integrated with most commercial hardware packages to perform real-time data capture and processing. Processing algorithms are being developed continuously to meet the complexities of processing microseismic activity in challenging environments such as high-noise operating

mines, complex velocity structures or limited coverage sensor arrays.

Itasca has a comprehensive range of cost-effective seismic data acquisition systems from sensors and signal conditioning to high-speed data acquisition. We provide an in-depth and objective analysis of the type and design required, including a three-dimensional site analysis to recommend the optimal positioning of a sensor array.

Additional microseismic services provided:

- Standard and advanced software tools for do-ityourself processing;
- Advanced database technologies for networking remote microseismic stakeholders;
- Microseismic project management, array design, data hosting and integrated processing systems;
- Geophysics team for provision of complete processing service solution; and
- Quality assurance of third party microseismic processing results.

Microseismic events from a mining operation viewed with InSite.

AC3D 5.00.105 (64bit) LAC3D ©2013 Itasca Consulting Group, Inc. # flac3d 5.00 Options tartup View Title

SOFTWARE SERVICES

Itasca first commercialized its software in 1985 when clients asked to have access to the software tools that our engineers used in their analyses. Itasca has pioneered and continues to innovate the application and development of numerical modeling software. Our software are among the most widely used and respected tools of their kind for analyzing and solving problems in geomechanics, hydrogeology, microseismic analysis, and other engineering fields. The result is a set of software that provides unparalleled speed, power, and proven capability for handling engineering problems ranging from traditional design work to understanding the most complex natural phenomena encountered in some of the most challenging environments.

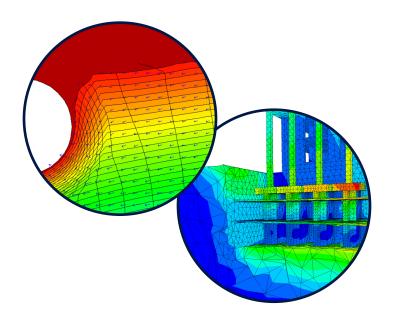
Itasca programs are used for design of major mining and civil construction projects, design of nuclear waste repositories, and oil reservoir treatment programs and have been used in a large portion of rock mechanics research projects worldwide. More than 4,000 mining and civil construction companies, consultants in rock and soil mechanics, and university and government researchers use these programs worldwide.

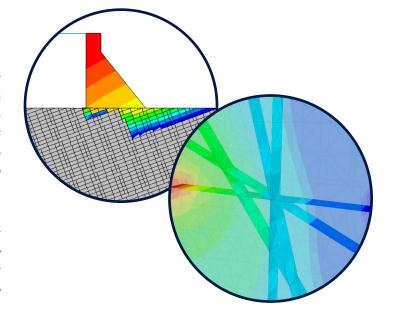
Itasca software programs include the two- and three-dimensional continuum programs FLAC (including FLAC/Slope) and FLAC3D, the two- and three-dimensional discontinuum programs UDEC and 3DEC, the two- and three-dimensional particle-flow simulation programs PFC2D and PFC3D, the three-dimensional, finite-element groundwater flow code MINEDW, the integrated seismic data acquisition, processing, management and visualization software InSite for seismological studies, and the three-dimensional code DFN.lab for simulating 3D DFNs for engineering and research problems.

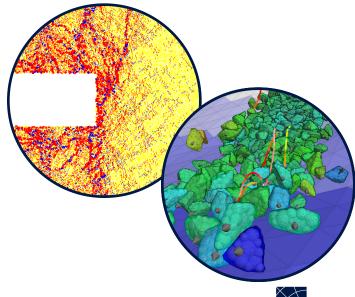
Itasca often performs custom modification or development of these programs for specific project or client needs. Development of all software is governed by input from Itasca's consulting practice. Consequently, clients are assured that these software are practical, efficient analysis tools with a proven record of solutions to real-world problems.

For more information or to download a free software demo, please visit: www.itascacg.com/software.

FLAC® − FLAC3D™

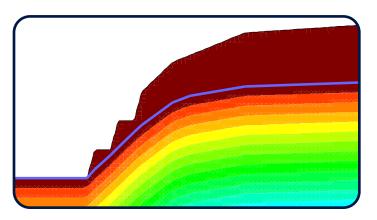

These are two- and three-dimensional explicit finite-difference programs for engineering mechanics simulations. These programs model the behavior of soil, rock, or other materials that are subject to plastic yielding. Materials are represented by a continuum of zones, which form a grid that is adjusted by the user to form the shape of the model to be simulated (e.g., tunnel, open pit, tailings dam, etc.). These programs are capable of simulating large strains (including unstable physical processes such as collapse), joints along which slip and/or separation can occur, groundwater flow, multiple excavation sequences (including backfilling), and dynamic processes and includes structural elements (e.g., liners, rock bolts, cables, beams, etc.).

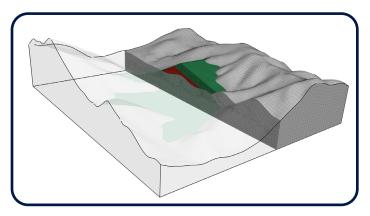

UDEC™ - 3DEC™


Two- and three-dimensional distinct element codes for modeling discrete or jointed systems (e.g., rock mass, rock grains, hydro-electric dams on jointed rock foundations, masonry structures). Materials are represented by a network of blocks cut by discontinuities with surface (boundary) conditions. Blocks are able to rotate and slide along joints and joints can open or close. Blocks can be rigid or deformable (allowing yielding). The programs are capable of simulating large block displacements, groundwater flow along discontinuities, multiple excavation sequences, and dynamic processes and include structural elements (e.g., liners, rock bolts, cables, beams).

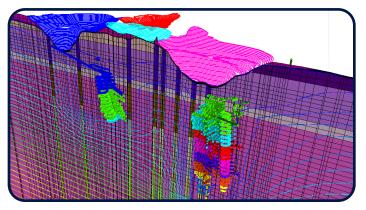
PFC Suite™

Two- and three-dimensional distinct element programs for modeling the movement and interaction of assemblies of arbitrarily sized circular or spherical particles. *PFC Suite* includes both *PFC2D* and *PFC3D*. The codes create an ideal environment for study of the behavior of synthetic materials, modeling bulk flow and materials mixing, studies of micro- and macrodamage (cracks) in solid bodies, including damage accumulation leading to fracture, dynamic breakage, and seismic response. *PFC2D* is also sold separately.

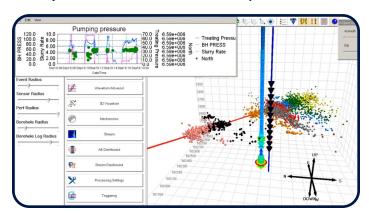



FLAC/Slope™

FLAC/Slope is a free, specialized version of FLAC designed specifically for slope stability factor-of-safety analysis. This code allows rapid generation of problem geometries and factor-of-safety calculation using the shear-strength reduction technique. One particular feature of this code is the ability to overlay DXF plots to speed model generation. Users can also specify water tables and pseudostatic earthquake loading.


Griddle™

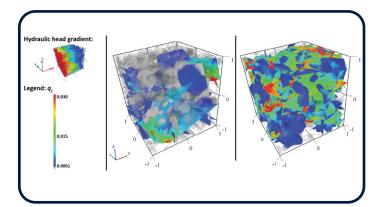
Griddle is a fully interactive, general-purpose mesh generation plug-in for the Rhinoceros 6.0 3D CAD software (www.rhino3d.com). Griddle can be used to remesh Rhino surface meshes to comply with precise size specifications and type (triangle or quad-dominant). Surface meshes can then be used as boundaries for Griddle's volume mesher, which produces high-quality tetrahedral or hex-dominant meshes. The volume meshes are ready for importing into most engineering analysis packages, including FLAC3D and 3DEC.


MINEDWTM

Itasca's hydrogeological software has been specifically developed for simulating groundwater conditions. MINEDW (www.itascadenver.com/minedw) is very efficient in simulating complex geometry and spatial and temporal change of hydraulic conductivity of disturbed rock as the results of excavating. The simulated pore pressure distribution from MINEDW model can be readily imported into Itasca's geomechanical models.

InSite™

Itasca's integrated seismic data acquisition, processing, management, and visualization software seismological analysis, ranging in scale from acoustic emissions in the laboratory through microseismics around underground excavations up to regional-scale earthquakes. The software is independent of acquisition hardware and can be integrated with hardware packages to perform real-time data capture and processing. InSite software is used by many international companies and organizations for in-house processing and management of microseismic data. In Site is available as In Site-Geo. InSite-HF, and InSite-Lab for geomechanical, hydraulic fracturing, and laboratory applications. InSite-Lite is also provided as a free microseimicity viewer.


KATS

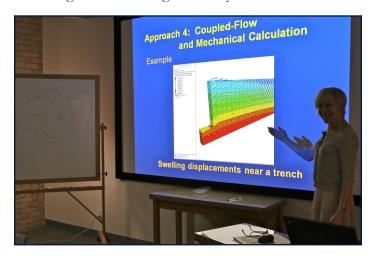
Kinematic Analysis Tools for Slopes (KATS) is a tool aimed at assessing instabilities caused by daylighting wedges and planar failures formed when different structural sets interact with the orientation of a given slope. The main application of the code is the socalled bench-berm scale analysis, which is understood as a first step in the mining slope design process for moderate and competent rock masses. However, it is possible to perform a kinematic analysis in inter-ramp scale. Unlike other tools currently available, through a single automated process, KATS allows performing a probabilistic or deterministic assessment of the behavior of a large number of slope configurations defined by many structural domains and many orientations and geometries of the slope. The results from the analysis can be provided using a variety of parameters, such as loss of crest, spill lengths, bench face angle distribution, etc. All these results allow a geometric definition of the interramp (IRA) angles that achieve the acceptability criteria defined by the operation from the point of view of stability and safety of personnel and equipment.

DFN.lab™

DFN.lab is used for simulating fluid flow and trasport in 3D discrete fracture networks (DFNs) for engineering and research problems. DFN,lab is capable of:

- generating genetic models containing millions of fractures based on the physics of fracturing,
- compute stationary and transient flow with various boundary conditions in significantly large systems,
- characterize the DFN structure and hydraulic properties using novel statistics and graph methods

Software Customization

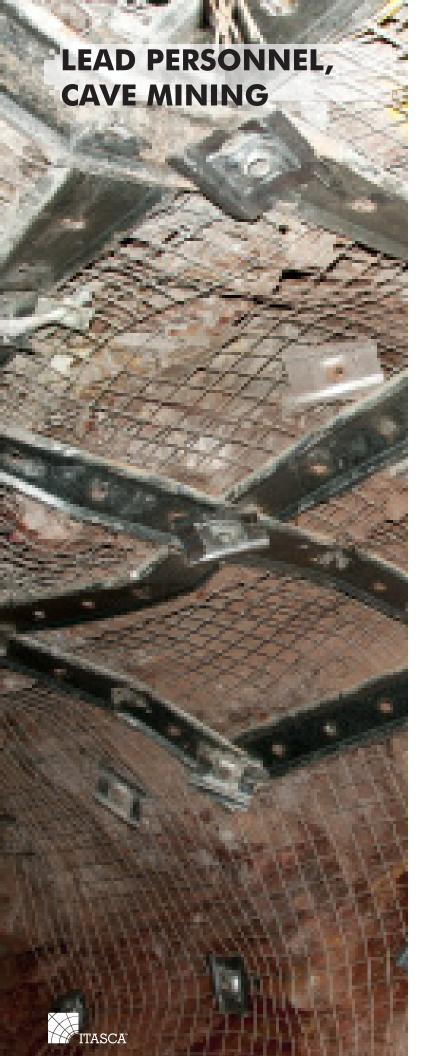

Itasca's software development is directed and refined by Itasca's consulting practice and client feedback. Itasca develops specialized material constitutive and contact models, FISH and Python functions, or even entirely novel simulation software in consultation with clients or as part of research collaborations. The software REBOP (cave mining), Blo-Up (blast design), Slope Model (slope stability), and XSite (hydraulic fracturing) were created in this manner and are used for both consulting and research.

For more information, please contact us at:

info@itascainternational.com

Training

Itasca offices worldwide routinely offer software training courses throughout the year.


You can find out which courses are currently available here:

www.itascainternational.com/training

Custom engineering or software training courses can also be arranged at one of our offices or at your organization. Online web forms can be found at the following address.

www.itascainternational.com/engineering-training www.itascainternational.com/software-training

Martin Brown Itasca Chile SpA Hydrogeology Manager, Water Management Engineer

martin.brown@itasca.cl

Mr. Brown is a civil engineer who holds Diplomas in Water and Environmental Management from the University of Bristol (UK) has worked in the field of water and tailings management and dewatering systems for major mining operations and projects in Chile and South America for over 15 years, the last of which is for Itasca.

He has a diverse background in mining applied hydrogeology. For mining operations his experience includes planning and management of water resources and open-pit dewatering systems through 3D hydrogeological and pore pressure numerical models and support in the elaboration of environmental impact assessments. Has also been fluids transport manager with responsibility over tailings storage facilities, water supply systems and slurry pipelines. While in Itasca his experience includes elaboration of 3D hydrogeology numerical models for open-pit mines, assessment of dewatering systems and support in the elaboration of environmental permits related to groundwater management.

Richard Brummer

Ph.D., P. Eng. Itasca Consulting Canada, Inc. President and Principal Geomechanics Engineer rbrummer@itasca.ca

M.A.Sc.

Itasca Consulting Canada, Inc. General Manager & Principal Geomechanics Engineer coconnor@itasca.ca

M.Sc., Ph.D.
Itasca Consulting Group, Inc.
General Manager and
Principal Geomechanics Engineer
tgarza@itascacg.com

Dr. Brummer has 35 years of in experience geomechanics consulting, practical mining applications, research and academia. His areas of specialization are all aspects of the behavior of highly stressed rock in deep mines or in extensively mined workings. He also has expertise in rockbursts, the design of microseismic and general instrumentation systems, the design of backfill and backfill systems, and particularly in the optimization of mining layouts to reduce risk and maximize value. He is the author of over 50 technical articles. Dr. Brummer is a Registered Professional Engineer in Ontario, Quebec, Saskatchewan & the Northwest Territories, and is a Designated Consulting Engineer with Professional Engineers Ontario.

Mr. O'Connor is a mining engineer with a Master of Applied Science degree in Mineral Resource Engineering. He has worked in the mining field for over 20 years focusing on advanced numerical modeling and geomechanics. Mr. O'Connor has returned to Itasca after four years working at Glencore's Nickel Rim South Mine as the Senior Ground Control Engineer for the site.

Dr. Garza-Cruz is a geomechanics engineer with experience in the application of three-dimensional continuum and discontinuum numerical methods to assess the stability of mining excavations, caveability, extraction performance, surface subsidence, primary fragmentation, and stopeback behavior, as well as to evaluate underground mining methods and understand the creep behavior of excavations in frozen ground.

She has applied numerical models to formulate recommendations on mine design criteria (pillar, room, stope, and panel dimensions), as well as regional barrier-pillar and crownpillar dimensions, sequencing, and set back of infrastructure and accesses. She has also developed specialized tools using Bonded Block Models in 3DEC for the study of spalling rock mass response at tunnel scale.

Patricio Gómez

Itasca Chile SpA General Manager, Applied Geotechnical Engineer patricio.gomez@itasca.cl

Ph.D., P. Eng. Itasca Denver, Inc. General Manager and Principal Hydrogeologist hliu@itascadenver.com

Mr. Gómez is a civil engineer who holds a Diploma in Geomechanics Applied to Mining from the University of Chile and has worked in the field of soil and rock mechanics for major mining projects in South America for over 35 years, 25 of which are for Itasca. He has a diverse background in mining applied geomechanics. On underground operations his experience includes assessment of mining methods and recommendation of mining sequences for block caving operations, stability analyses for underground chambers and ore-pass sectors, as well as the evaluation of ground-support methods, analysis of rock mass degradation, caveability analyses, and stress field calibration. His main area of expertise is geomechanics for open-pit mines, including slope design at several scales, stability assessments and backanalysis of slope failures and dynamic analysis of slopes under effects of earthquakes. Surface consulting projects include static and dynamic stability analyses and the liquefaction potential of tailings dams, water reservoirs and waste dumps in highly active seismic areas.

Dr. Liu has more than 25 years of project experience in mining hydrogeology, geochemistry, groundwater flow modeling. He has worked on and directed numerous mining hydrogeology projects in southern Africa, South America, Turkey, North America, Russia, and East Asia. He has also been the Principal-in-Charge of Itasca's hydrogeologic projects for key mining companies such as Alrosa, De Beers, Cameco, Anglo American, Debswana, Doe Run, Freeport McMoRan, Rio Tinto, Goldcorp, and Codelco. These projects include mine dewatering, slope depressurization, water management of surface and underground mines, environmental impacts, and mine water quality. In addition, Dr. Liu has extensive experience in the code development of MINEDW, as well as more than 25 years of groundwater flow modeling experience using other commercial codes such as MODFLOW, MT3D, and FEFLOW. He also provides expert opinions for regulatory hearings and due diligence reviews and has taught numerous hydrogeologic courses.

Loren Lorig

Ph.D., P. Eng.
Itasca Consulting Group, Inc.
Itasca Chile SpA
Principal Mining Engineer
Ioren.lorig@itasca.cl

Ph.D., MAusIMM CP (Geotech)
Itasca Australia Pty. Ltd.
General Manager and Principal
Geotechnical Engineer
gsharrock@itasca.com.au

Jonny Sjöberg

Ph.D.
Itasca Consultants AB
General Manager and Principal
Engineer
jonny@itasca.se

Dr. Lorig has more than 35 years of experience in engineering projects requiring specialized geomechanics consulting. His area of expertise is in the application of numerical models to provide solutions to stability, support and dynamics problems in civil and mining engineering. Dr. Lorig has worked extensively at some of the largest open pits in the world and currently is working on studies involving transition from open-pit to underground mining at sites around the world. He has served as a member of consulting and peer review boards for several large projects. He has conducted over 40 short courses, authored more than 50 technical articles and made ten keynote presentations. He is a Registered Professional Engineer in several U.S. states.

Dr. Sharrock's has 15 years industry experience in a wide range of rock mechanics positions such as Principal Geotechnical Engineer (Newcrest Mining Rock Mechanics NL), Engineer (Mt Isa Mines), Senior Geotechnical Consultant (AMC Consultants), Senior Lecturer in Geotechnical Engineering (UNSW) and Associate Professor - Caving Geomechanics (UQ). His last position Principal Geotechnical Engineer at Newcrest's Cadia East, Ridgeway Deeps, Ridgeway SLC and Telfer Mines. In addition to Newcrest, consulting experience includes Argyle, Perseverance, North Parks, Koffiefontein, Resolution, Goldex, Afton, Ekati, Perseverance Deeps, and Ridgeway Deeps (Lift 2).

Dr. Sjöberg is a rock mechanics with experience engineer operations, research and consulting within mining and civil engineering. He holds a Ph.D. in the area of openpit slope stability, and has worked on underground and surface mining projects in rock mechanics, civil engineering tunneling projects, stress measurements and various other numerical modeling projects. Dr. Sjöberg also is an Adjunct Professor in Rock Mechanics and Rock Engineering at Luleå University of Technology.

"More than **40** years of solving mining challenges through engineering and computer simulation."

Thank you for your interest in Itasca's services to the mining industry. Please let us know how we can assist you with your work.

Contact us at:

Itasca International Inc.
111 3rd Avenue South, Suite 450
Minneapolis, Minnesota 55401 USA

Tel: +1 (612) 371-4711 Fax: +1 (612) 371-4717

> info@itascainternational.com www.itascainternational.com

Follow Itasca:

