
1 LOGIC OVERVIEW 

The transport and placement of proppant within 3DEC (Itasca 2013) joints is modeled by consid-
ering that, in the absence of gravity induced settling, the proppant and fluid move at the same 
velocity. The logic follows the general approach summarized by Adachi et al. (2007). It is as-
sumed that the proppant particles are generally small compared to fracture width, and that the 
quantity of proppant in the fracture is given by its volumetric fraction. Also, the only mechanism 
to account for relative velocities between the proppant and the carrying fluid is gravity-induced 
settling. 

When the proppant volumetric fraction reaches a saturation value, the slurry (mixture of 
fracturing fluid and proppant) behaves like a porous solid, and the proppant particles conform to 
a “pack”. Also, if the joint aperture becomes small compared to particle diameter, the mobility of 
the proppant is inhibited, again forming a “pack” or “bridge”. Thereafter, two effects are consid-
ered: first, the proppant pack is able to take the load from the closing fracture (mechanical effect), 
and second, only the carrying fluid is able to mobilize through the pores of the pack (fluid transport 
effect).  

When settling is allowed to take place, the proppant velocity has an additional vector compo-
nent, which acts in the direction of gravity, to account for particle settling. The settling rate is 
proportional to the Stoke’s velocity (under gravity) of a particle of given size in a fluid of given 
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viscosity. Also, an empirical multiplication factor (a function of volumetric fraction) is applied to 
Stoke’s velocity, to account for particle interaction and wall effects.  

2 BASIC EQUATIONS 

2.1 Transport equations 

The advection (volume conservation) equation for the proppant volumetric fraction, c is 
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where a is joint aperture, and vp is the proppant velocity vector. 
Coupling between Eq.(1) and the logic for fluid flow in 3DEC is done via the slurry velocity, 

v which is obtained by solving the existing fluid flow equations, and noting that the relation be-
tween slurry flow rate, q (per unit width of the joint) and slurry velocity is: 

a


q
v (2) 

When settling is allowed to take place, the proppant velocity is calculated from the slurry ve-

locity using: 

(1 )p sc  v v v (3) 

where vs the slip velocity, is a vector parallel to the gravity acceleration g. The magnitude of the 
slip velocity is calculated from Stokes equation, and a correction factor (function of the concen-
tration) is applied to take into account the effect of proppant interaction and wall effects: 

 s stokesf cv v (4) 

In Eq.(4), vstokes is the Stokes drag law on a single particle: 
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where  p and  f are the density of the solid particle and the carrying fluid, respectively, dp is the 
representative diameter of the proppant, and  is fluid dynamic viscosity. 

Also, a widely used form of the correction factor is provided by the Richardson & Zaki corre-

lation (1954): 

4.65( ) (1 )f c c  (6) 

 After substitution of Eq.(6) in (4), and of the resulting expression in (3), we obtain: 

*

p Stokesf (c)  v v v (7) 

where 

* 5.65( ) (1 )f c c  (8) 

The settling rate coefficient (1c)5.65 is plotted versus volumetric concentration, c in Figure 1. 
Settling is slower at higher concentrations. 
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Figure 1. Settling rate coefficient f(c) (1-c) versus concentration, c. 

2.2 Proppant convection 

Another coupling variable of interest is the slurry density, which affects the Reynold’s governing 
equation for the fluid flow. In the proppant logic formulation, the Boussinesq approximation, that 
fluid density variations due to concentration changes are significant only in their generation of 
buoyancy forces, is invoked.  

In the existing 3DEC fluid flow logic, the flow rate per unit width of the joint is: 

 .ka p    q g x (9) 

where k = a2 / (12) is the joint mobility coefficient,  is the fluid (slurry) density, and g is gravity. 
In the Boussinesq approximation, it is assumed that the fluid density in Eq.(9) relates to the prop-
pant concentration, c by the linear equation: 
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where  f is the density of the carrying fluid, and  p is the density of the proppant. 

The effect of the suspended particles on the slurry viscosity is accounted for by adjusting the 

carrying fluid viscosity as a function the proppant concentration by means of empirical formulae. 

This coupling functionality is not accounted for directly in the formulation; however it can cur-

rently be introduced via FISH. 

3 NUMERICAL IMPLEMENTATION 

The advection equation is solved numerically using a node-centered finite volume approach (for 
a cell-centered formulation, see LeVeque 2002). The scheme takes advantage of the triangular 
discretization of the flow planes used in the fluid flow calculations. Also, the nodes are discreti-
zation features located at the triangle apex. A control domain is assigned to each node, and the 
proppant volume fraction, c, the proppant height in the joint, h, together with the joint aperture, a 
are averaged over the control domain. The boundary of the two dimensional control domain for a 
particular node is a polygon of straight line segments; two segments are defined per triangle hav-
ing the node in common, and each segment links the center of the triangle to the mid-point of a 
side that radiates from the node, see Figure 2.  

The proppant volume fraction at a node (located in a joint) is: 

h
c

a
 (11) 

and the proppant height at a node is: 

h ca (12) 
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Figure 2. 3DEC flow plane discretization in triangles (blue) showing node and control domain (red). 

To discretize Eq.(1) using the finite volume method, we first integrate over the control domain 
of area, A: 
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and then make appropriate approximation for fluxes across the boundary of each control domain. 

3.1 Transport with no aperture change 

We examine each term in Eq.(13), separately for the case when transport is taking place and ap-
erture is not changing. 

3.1.1 Transient term 
When transport is taking place (and aperture is kept constant), the discretization of the transient 
term integral is given by: 
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where t is the time step. 

3.1.2 Advection term 
The advection term is expressed in terms of the slurry and settling velocities using Eq.(3): 
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p Stokes
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We use Gauss divergence theorem to transform the integral over the control domain into an 
integral over its polygonal boundary, C : 

  *( )p Stokes

A
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(16) 

where n is the normal to the boundary pointing out of the control domain. 
The slurry advection term in Eq.(16) is expressed in terms of flow rate per unit width of the 

joint, using Eq.(2): 

ca ds c ds   v n q n 
C C

(17) 
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 The discretization of the slurry advection term is given by: 

 s ss
s

c ds c L   q n q n
C

(18) 

where the summation over the boundary segments of a control domain is denoted by 
s

 and Ls 

is the length of each segment. 

The vector n is the normal to the segment pointing out of the control domain centered on point 

1P into an adjacent control domain centered on point P2, see Figure 3. The value of cs is determined
by the convection scheme adopted to achieve physically realistic solutions. Here, we use an up-
wind scheme, whereby the advected quantity, cs is taken upstream from the flow: 
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The upwind scheme is unconditionally stable, however, the solution over predicts the diffusive 
terms producing numerical smearing of the front. The quality of the solution can potentially be 
improved using second-order correction terms with flux limiters; however this technique is not 
implemented in the current version of the scheme.  

Figure 3. Control domains and quantities used to illustrate the upwind advection scheme. 

The settling advection term in Eq.(16) is a non-linear function of the primary variable, c. The 
discrete form used in the numerical scheme is given by 

 * *( ) ( )Stokes s Stokes ss
s

caf c ds h f c L   v n v n
C

 (20) 

where, h = ca  (see Eq.(12)), the value of c (used to express the correction term f * ) is the average 
value of c at the three nodes of the triangle containing the boundary segment, and  
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Combining Eq.(14), Eq.(18) and Eq.(20), the discretization of Eq.(13) is written for each con-
trol domain as 
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In the (explicit) time stepping numerical scheme, all the quantities in the right hand side of 
Eq.(22) are assumed to be known from the previous time step. A new proppant height for the step 
is evaluated for each node, and the volume fraction is then updated using Eq.(11).  

The fluid flow scheme already in place assumes fluid volume balance. Also, the advection 
scheme conserves proppant volume (there is no lost proppant because it is simply moved from 
control volume to another in the flow domain); this will be demonstrated in the example below.   

3.2 Mechanical coupling 

3.2.1 Aperture change with no transport 
In addition to the change in concentration due to advection, the concentration at a node changes 
with changes in aperture. When no transport is taking place (vp = 0), and the advection equation 
Eq.(13) simplifies to: 

 
0

A
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

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The equation implies that the product ca remains constant. In other words, because the mass of 
proppant is constant during the mechanical step in which aperture is changed, the new concentra-
tion c1, may be calculated directly from the change in joint aperture (from a0 to a1) during the step, 
as follows: 

0
1 0

1

a
c c

a
 (24) 

where c0 is the concentration before the step. 

3.2.2 Load carried by the proppant pack 
The condition for proppant taking the load is reached when the proppant (volumetric) concentra-
tion reaches the saturated value, climit equal to the ratio between maximum initial (unloaded) den-
sity of packed proppant,  0 and the density of the proppant particles,  p.   

The general equation for the stress carried by a laterally confined pack of material of maximum 
initial (unloaded) density, in which an axial displacement, u is applied is: 

*

p

u
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h



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where B is the confined modulus (equal to K + 4G / 3 for an isotropic material), and hp
*    is the 

height of the unloaded pack. The relation of fracture-width to stress from tests performed on prop-
pant suggests that the assumption of linearity in Eq.(25) is valid.  

Expressing (25) in incremental form, for a fracture of aperture a: 

*

p

a
B

h



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This equation is valid only when the condition for the proppant to take the load has been met 
(i.e. c > clim), and for as long as the total stress,  remains compressive. If the requirements are 
not met, the proppant takes no load. The constants clim and B are input properties for the proppant. 

If  > 0 in a particular node, the advection of proppant is blocked. However, the carrying fluid 
is allowed to flow through the pack; the intrinsic permeability of the pack is a user input value.  

The mechanical effect of proppant on the normal contact force, Fn, is captured by the following 
equation: 

 n fF A P w     (27) 
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Where  is the change of proppant stress over one time step, and wf is an appropriate node-
contact weighting factor. 

3.3 Bridging 

The proppant is blocked if the fracture width is small enough, compared to the particle size. The 
particle size is a user input value. 

3.4 Proppant convection 

The convection mechanism caused by density variation in the slurry is taken into account in the 
formulation, by adjusting locally the slurry density in the fluid transport equation, according to 
Eq.(10). 

3.5 Condition at an intersection between flow planes 

The simplified, two plane configuration represented in Figure 4 is used for the discussion. 
 
 
 

     
Figure 4. Two intersecting flow planes with discretization triangles, edge nods and control domains (red). 

 
 
 
Each flow plane is discretized into triangles; node 1 and node 2, located on the planes intersec-

tion, are grouped in a ‘knot’. The control domains for node 1 and node 2 are lumped together and 
the result is assigned to the knot: 

1 2knotA A A   (28) 

Also, the knot aperture is evaluated using an area average at the node quantity: 

1 1 2 2
knot

knot

a A a A
a

A


  (29) 

The new proppant height at the knot, hknot is calculated using the numerical scheme described 
above; the proppant concentration at the knot, cknot  is then obtained by dividing proppant height 
by knot aperture, i.e. cknot = hknot / aknot. The knot concentration is assigned to node 1 and node 2, 
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and the new proppant height at the node is computed by multiplying concentration and node ap-
erture: h1 = cknot a1, h2 = cknot a2. The proppant volume balance at an intersection: 

1 1 2 2knot knoth A h A h A  (30) 

is conserved automatically using this scheme. 

3.6 Timestep for stability 

There are two ways to run a fluid-proppant transport calculation: a) uncoupled (the flow calcula-
tion is performed first, and the proppant transport next), or b) coupled (the proppant transport 
calculation is performed after each flow calculation step).  

Also, the stable explicit time step for the proppant transport, is in most cases much larger than 
the explicit fluid flow time step. In uncoupled simulations, the stable time step for proppant 
transport is calculated by considering the CFL condition (Courant-Friedricks-Lewy) for the dis-
cretized form of the one dimensional advection equation: 

0
c c

v
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 
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(31) 

The Courant number is defined in this case, as: 

c t

x
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where t is the proppant time step, and x is the discretization length, and the condition for sta-
bility is: 

0 1  (33) 

For the 3DEC uncoupled simulations, we use the following expression of stable time step, 
based on Eq.(32): 
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L
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where Lmin is the smallest discretization length, and vp,max is the largest proppant velocity mag-
nitude among triangles in the flow planes. 

In coupled simulations, the stable time step is taken to be the same as the explicit fluid step. In 
coupled fluid-proppant-mechanical calculations, in each calculation step: the fluid flow is carried 
out first, then the proppant transport is done, finally enough mechanical steps are taken (consistent 
with the settings) to keep the system in quasi-static equilibrium. 

3.7 Boundary and initial conditions 

Two types of boundary conditions are considered for the proppant transport problem: imposed 
volumetric flux of proppant, and imposed volumetric fraction. 

The second type is difficult to realize physically: it is introduced only to facilitate potential 
comparison of the numerical results with existing analytic solutions. The proppant volume frac-
tion can be initialized within a geometrical range in the flow planes. 

4   VERIFICATION TEST 

A simple advection test is conducted to check the functionality of the proppant transport logic in 
a planar horizontal joint of constant and uniform aperture a. The joint is 10 m long, 1 m wide, and 
aperture is 0.1 mm. A uniform pressure gradient of 0.1 MPa/m is applied in the long direction of 
the joint. The fluid viscosity  is 10-3 Pa.m. The joint discretization length is 0.25 m. With the 
parameter values selected for the test, the fluid velocity in the fracture v = (a2 / 12  ) p is about 
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8.33 10-2m/s, or 1/12 m/s. The concentration is fixed at 0.3 at the left (short) edge of the joint. The 
pore pressure contours and velocity vectors in the joint are shown in Figure 5. The profiles of 
concentration at 12s, 36s, and 60s are plotted in Figure 6. 

Figure 5. Pore pressure contours and velocity vectors in the joint. 

Figure 6. Concentration profile (concentration versus distance). 

The pulse front is centered at the expected locations: 1 m, 3 m, and 5 m from the fixed concen-
tration joint edge, but there is some dispersion (spreading of the initially vertical pulse front). 
Numerical dispersion is common in solving hyperbolic equations like Eq.(1) using conventional 
upwind techniques. As mentioned in Section 3.1.2, numerical techniques exist to reduce the front 
dispersion (e.g. by application of a second-order correction with a limiter), but they have not been 
implemented in this development. Contours of proppant concentration at the corresponding times 
are shown in Figure 7. 

As expected in numerical simulations: the accuracy of the solution can be increased by decreas-
ing the discretization length. 
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Figure 7. Concentration contours in the joint at 12s, 36s, and 60s. 

5 EXAMPLE 

Fluid injection in a 10 m  10 m  10 m block of elastic material containing two perpendicular 
fracture planes is simulated in this example. The origin of the coordinate system is at the center 
of the block. The initial stress in the block is 3 MPa in the x- and z-direction, and zero in the y-
direction. The bottom of the block is fixed, and a pressure of 3 MPa is applied at the top.  A roller 
boundary condition is applied at x = -5 m, and a pressure of 3 MPa is applied at x = 5 m. The 
boundaries of the block in the y-direction are stress free. The first fracture plane is horizontal and 
goes through the origin of axes; the second fracture is located at x = 2.5 m. The bulk modulus of 
the elastic material is 5 GPa, and the shear modulus is 2 GPa. The normal stiffness of the fracture 
is 50 GPa/m, and the shear stiffness is 10 GPa/m. The fracture aperture under zero stress is 0.1 
mm, the residual aperture is 0.01 mm, and the maximum aperture is 0.2 mm. A volumetric source 
of fluid loaded with proppant is applied at x = 0.14 m. The injection rate is 0.01 m3/s. The carrying 
fluid has a density of 1000 kg/m3, a viscosity of 10-3 Pa.m, and a bulk modulus of 0.05 GPa. The 
volumetric concentration of proppant in the injected fluid is 0.1. 

The pore pressure contours and specific discharge vectors in the fractures are shown at the end 
of the 2s simulation in Figure 8 (note that the y-axis is quasi-vertical in the figure). 

The fluid has migrated extensively in the first fracture, and has also intruded in the second 
fracture. The fracture aperture at 2s is plotted in Figure 9. Contours of proppant concentration at 
the end of the 2s simulation are shown in Figure 10. 

Figure 8. Pore pressure contours and specific discharge vectors at 2s. 
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Figure 9. Contours of fracture aperture at 2s. 

Figure 10. Concentration contours at 2s. 

The simulation shows that the proppant has migrated in a radial pattern in the first fracture, and 
that it has also intruded in the second fracture. Comparison of the proppant volume injected at the 
source to the volume of proppant distributed in the model (using a FISH function) shows that 
volume balance is satisfied to within a relative error less than 0.2% at the end of the simulation.   

6 APPLICATION 

A field scale fracturing job is modeled to demonstrate more realistic proppant transport behavior. 
The rock mass represented in the model is located at a depth of 2250 m to 2750 m, and a 2 MPa 
step change in stress occurs at 2540 m (60 m above the injection point), as shown in Figure 11.   

The rock mass is assumed to be homogenous with constant bulk and shear moduli of 5 GPa 
and 2 GPa, respectively. A Newtonian fluid with a viscosity of 0.1 Pa·s is injected at 0.05 m3/s 
for one hour, and the proppant concentration ramps up gradually from zero in the first 10 minutes 
to a volume fraction of 0.15 at 50 min, as shown in Figure 12. The proppant size is 0.425 mm (40 
mesh).  Leakoff of fluid into the matrix is ignored because the rock is assumed to have a very low 
permeability. 
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Figure 11. Pore pressure and minimum horizontal stress along the depth. 

Figure 12. Proppant pump schedule with ramp up of proppant concentration. 

Figure 13 shows the fracture aperture at 30 min and 60 min. The fracture initially propagates 
as a radial crack from the injection point. The full hydro-mechanical coupling results in pinching 
and a low aperture at the interface between the stress layers. Mechanically the fracture has a ten-
dency to propagate upward rapidly once it reaches the step change in stress (due to the lower 
stress), which would require a large volume of fluid to fill the rapidly opening fracture.  However, 
the pressure drop on the bottom layer increases due to the increasing flow speed which results in 
the tighter compression of the stress to form the pinch. The height growth is controlled by the 
pressure drop and flowrate across the interface. 

Figure 13. Contour of fracture aperture at 30 min and 60 min injection. 
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Figure 14 shows the proppant concentration at 30 min and 60 min. By 30 min, an area of high 
concentration area has formed along the pinch line and no proppant has entered the top layer, 
indicating that proppant is “bridged” along the interface of step change in stress.  By 60 min, the 
area of proppant distribution has expanded in the bottom layer, but still no proppant can pass 
through the pinch line. The proppant concentration in some sparse areas along the interface has 
reached the “pack” limit of 0.7. Once “bridging” or a “pack” has formed, it is treated as a perme-
able medium through which fluid can flow. In this case, the pack permeability is set to be 0.01 
times the permeability of an open channel of the same width (no proppant). This results in a sig-
nificant decrease of fluid supply into the upper layer. 

Figure 14. Proppant concentration contour at 30 min and 60 min. 

7 CONCLUSIONS 

A scheme to model proppant transport in fractures has been designed and implemented in the 
3DEC code. The logic takes into account fluid-mechanical coupling and several effects are repre-
sented, such as pack-formation, bridging, proppant convection, and settling. The theoretical basis 
and the numerical implementation of the scheme have been described in the paper. A simple ver-
ification test, and example simulation have been presented to illustrate some of the features. 
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