

From Waveforms to Seismic Events: Seismic Data Processing Using *InSite* Seismic Processing Software.

28th May 2020

Juan Reyes-Montes
Consultant

itasca@itasca.co.uk

InSite Seismic Processor

- Itasca's seismic software integrating data management, processing, analysis and interpretation
- Developed over the past 20 years incorporating tools from internal R&D and collaboration projects with clients and partners
- Used at all scales of seismic and acoustic monitoring, from laboratory rock deformation tests to processing of local and regional seismicity
- Latest version 3.16.1 released March 2020

Monitoring Design

Monitoring Design

- Simulation of the performance of existing or proposed monitoring arrays
 - Distribution of threshold magnitude
 - Misfit space: topography of search space for location algorithms
 - Shadow space: distribution of the number of stations in line-of-sight
 - Monte Carlo simulation of location errors
 - Generation of modelled synthetic waveforms

Waveform import and harvesting

Event detection and harvesting (InSite Leach)

- First step is the detection of seismic arrivals within the recorded data stream
- Scan the microseismic stream for triggers (potential events)
- Amplitudes in STA and LTA windows are compared to identify arrivals
- Coherence accross the array is also considered

Arrival Identification and Picking

Automatic Phase Picking

- Similar to Event harvesting, typically double window (STA/LTA) are used to automatically identify phase arrivals
- Picking function value and window sizes are determined by the signalto-noise ratio of the signals
- Alternative options include searching for polarisation, or changes in frequency domain
- Optimised picking based on trends in linear arrays and cross correlation
- Customisable search for P and S wave arrivals

Event Location

Event Location

- Velocity models:
 - Homogeneous Isotropic
 - Homogeneous Transversely Isotropic
 - Layered Isotropic
 - Layered VTI
 - Complex
 - Time dependent models

- Inversion Algorithms:
 - Homogeneous media
 - Geiger (isotropic)
 - Simplex (isotropic and VTI)
 - All media
 - Collapsing Gridsearch
 - Source Scan

Event Location: Collapsing Grid Search

- Search for residual minimum (location) by dividing the search volume into a number of small cells to create a grid. The grid is initially "coarse" as defined by the user.
- The algorithm calculates the error space misfit at each node on the grid.
- The grid then 'collapses' around this node to create a finer grid.
- This process continues until the accuracy of the grid reaches the desired resolution.

Event Location: Source Scan

- Waveform-based method, not requiring phase picking
- Based on checking the fitness of theoretical arrivals to the waveform for every grid point in a search volume, yielding as solution the point that maximises the fitness
- The fitness function is the stack of semblance weighted auto-function of the waveform, which can be the STA/LTA based on the RMS, RMS of the envelope or the AIC trace
- Polarization of P-wave can also be used as an additional weight
- Process is accelerated using a Gaussian Particle Swarm Optimization in the search

Velocity Model Calibration

Time-dependent velocity models: Velocity Surveys

Time-dependent velocity models: Velocity Surveys

- Periodical velocity surveys covering as much of the monitored volume and as many different directions as possible allow updating the velocity model during monitoring projects
- The model applicable to each time interval can be used in event location and estimate of source parameters

Velocity model Calibration

- Velocity models can be calibrated by optimising the location of ideally multiple known 'events' depending on the project and the scale:
 - Perforation shots
 - String shots
 - Surface vibes or weight drops
 - Ball drops
 - Early events

Event Results analysis

Events Results Analysis

- Analysis of processed Seismic/MS/AE events provides information on the fracturing process:
 - Fracture geometry
 - Fracturing process
 - Fracture mechanics
 - Location uncertainty

Follow Us

itasca.co.uk itasca@itasca.co.uk

https://www.youtube.com/channel/UCY3QCosy32Fblxx0VbO92jw

https://www.linkedin.com/company/itasca-consulting-uk/